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Abstract. Session types are a well-established approach to communica-
tion correctness in message-passing programs. We present an executable
specification of the operational semantics of a session-typed π-calculus,
implemented in Maude. We also develop an executable specification of
its associated algorithmic type checking, and describe how both specifi-
cations can be integrated. We further explore how our executable spec-
ification enables us to detect well-typed but deadlocked processes by
leveraging reachability and model checking tools in Maude. Our develop-
ments define a promising new approach to the (semi)automated analysis
of communication correctness in message-passing concurrency.

1 Introduction

This paper presents an executable rewriting semantics for a π-calculus equipped
with session types. Widely known as the paradigmatic calculus of interaction,
the π-calculus offers a rigorous platform for reasoning about message-passing
concurrency. Session types are arguably the most prominent representative of
behavioral type systems, which can statically ensure that processes respect their
ascribed interaction protocols and never exhibit errors and mismatches.

The integration of (variants of) the π-calculus with different formulations of
session types has received much attention from foundational and applied perspec-
tives. As a result, our understanding about (abstract) communicating processes
and their typing disciplines steadily reaches maturity. Despite this progress, rig-
orous connections with more concrete representation models fall short. In par-
ticular, the study of session-typed π-calculi within frameworks like Maude [1]
seems to remain unexplored. This gap is an opportunity to investigate the for-
mal systems underlying session-typed π-calculi (reduction semantics and type
systems) from a fresh yet rigorous perspective, taking advantage of the concrete
representation given by executable semantics in Maude.

Looking at session-typed π-calculi from the perspective of Maude is insight-
ful, for several reasons. First, Maude enables the systematic validation of such
formal systems and their results, improving over pen-and-paper developments.
Second, as there is not a canonical session-typed π-calculus, but actually many
different formulations (with varying features and properties), an implementation
in Maude could provide a concrete platform for uniformly representing them all.
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Third, resorting to Maude as a host representation framework for session-typed
π-calculi could help in addressing known limitations of static type checking for
deadlock detection, leveraging tools already available in Maude.

This paper reports our work on pursuing these three directions. We adopt
the session-typed π-calculus developed by Vasconcelos in [10] as the basis for
our implementation in Maude. For this typed language, dubbed sπ, we first im-
plement its (untyped) reduction semantics as a rewriting semantics, essentially
extending prior work on representing the π-calculus in Maude. Then, we imple-
ment its associated algorithmic type system, also given in [10]. Well-typedness
in [10] ensures fidelity (i.e., well-typed processes respect at runtime their ascribed
protocols) but does not rule out deadlocks and other kinds of insidious circular
dependencies. To address this, we leverage reachability and model checking in
Maude. Our Maude developments are publicly available online.3

To our knowledge, we are the first to represent session-typed π-calculi using
Maude. Prior works have used rewriting logic to investigate the operational se-
mantics for variants of the π-calculus. In [13] and [12], the reduction semantics
of a synchronous π-calculus is defined as a rewrite theory, which is implemented
in ELAN. The work [9] considers an untyped, asynchronous π-calculus, whose
labeled transition semantics is implemented as a rewrite theory, which is used
to formalize an associated may-testing preorder. The work [4] concerns a typed
process calculus but in a different context, in which types are used to enforce
privacy properties. Indeed, such work gives a Maude implementation of the la-
beled transition semantics of a privacy-oriented variant of the π-calculus and a
Maude implementation of its associated type system, which is implemented as
a membership equational theory.

The rest of this paper is organized as follows. Next, Section 2 summarizes the
syntax and semantics of sπ. Section 3 describes the definition of our rewriting
semantics for sπ in Maude, whereas Section 4 presents the rewriting implemen-
tation of the algorithmic type checking. Section 5 presents our developments on
deadlock detection. Section 6 closes with some concluding remarks. Additional
material has been collected in the appendices.

2 The Typed Process Model

The typed process calculus sπ, formalized by Vasconcelos [10], is a variant of the
synchronous π-calculus (cf. [6]) with constructs for session-based concurrency.
Here we summarize its syntax and semantics.

The calculus sπ relies on a base set of variables, ranged over by x, y, . . .. Vari-
ables denote channels (or names). Processes interact to exchange values, which
can be variables or booleans. Variables can be seen as consisting of (dual) end-
points on which interaction takes place. Rather than non-deterministic choices
among prefixed processes, there are two complementary operators: one for of-
fering a finite set of alternatives (called branching) and one for choosing one of

3 See https://gitlab.com/calrare1/session-types

https://gitlab.com/calrare1/session-types
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P | Q ≡ Q | P P | 0 ≡ P

P | (Q | R) ≡ (P | Q) | R (νxy) 0 ≡ 0

(νxy)(νwz)P ≡ (νwz)(νxy)P (νxy)P | Q ≡ (νxy)(P | Q) If x, y /∈ fn(Q)

if true then P1 else P2 ≡ P1 if false then P1 else P2 ≡ P2

Fig. 1. Structural congruence Rules for sπ

such alternatives (selection). More formally, the syntax of values, qualifiers, and
processes is presented below:

v ::= x | true | false q ::= un | lin

P ::= 0 | xv.P | q x(y).P | P1 | P2 | (νxy)P |
if v then P1 else P2 | x / l.P | x . {li : Pi}i∈I

The inactive process is denoted as 0. The output process xv.P sends the
value v along x and continues as P . Process q x(y).P denotes an input action
on x, which prefixes P . The qualifier q is used for inputs, which can be linear
(to be executed exactly once) or shared. Process un x(y).P denotes a persistent
input action, which corresponds to (input-guarded) replication in the π-calculus.
The parallel composition P1 | P2 denotes the concurrent execution of P1 and P2.
Process (νxy)P declares the scope of co-variables x and y to be P . These co-
variables are intended to be the output and input ends of a communication
channel. Given a boolean v, process if v then P1 else P2 continues as P1 if v is
true; otherwise it continues as P2. Finally, selection process x / l.P chooses an
option l offered by a process prefixed at the co-variable and branching process x.
{li : Pi}i∈I offers multiple alternatives, which are labeled l1, l2, . . .; the selection
process continues with P and the branching process with a process Pj .

As usual, q x(y).P binds y in P and (νxy)P binds x, y in P . The set of free
and bound names of a process P , denoted fn(P ) and bn(P ), is as expected.

The operational semantics for sπ is given as a reduction semantics, which,
as customary, relies on a structural congruence relation, the smallest congru-
ence relation on processes that satisfy the axioms in Fig. 1. Structural congru-
ence includes the usual axioms for inaction and parallel composition as well as
adapted axioms for scope restriction, scope extrusion, and conditionals. Armed
with structural congruence, the rules of the reduction semantics are presented in
Fig. 2. Rules [R-LinCom] and [R-UnCom] induce different patterns for process
communication, depending on the qualifier of their corresponding input action.
Indeed, processes xv.P and q y(z).Q can synchronize if x and y are co-variables.
This is only possible if both processes are underneath a scope restriction (νxy).
When this occurs, processes xv.P and q y(z).Q continue respectively as P and
Q[v/z], i.e., the process obtained from Q by substituting the free occurrences of
z with v. When q = un then process q y(z).Q remains (Rule [R-UnCom]); oth-
erwise, process q y(z).Q disappears (Rule [R-LinCom]). Rule [R-Case] stands
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(νxy)(xv.P | lin y(z).Q | R) −→ (νxy)(P | Q[v/z] | R)
[R-LinCom]

(νxy)(xv.P | uny(z).Q | R) −→ (νxy)(P | Q[v/z] | un y(z).Q | R)
[R-UnCom]

j ∈ I
(νxy)(x / lj .P | y . {li : Qi}i∈I | R) −→ (νxy)(P | Qj | R)

[R-Case]

P −→ P ′

P | Q −→ P ′ | Q
P −→ P ′

(νxy)P −→ (νxy)P ′ [R-Par] [R-Res]

P ≡ P ′ P ′ −→ Q′ Q ≡ Q′

P −→ Q
[R-Struct]

Fig. 2. Reduction semantics for sπ

for the case synchronization: processes x / lj .P and y . {li : Qi}i∈I can synchro-
nize if they are underneath a scope restriction (νxy). Process x/ lj .P reduces to
process P and process y . {li : Qi}i∈I reduces to process Qj . Rules for parallel
composition, scope restriction and structurally congruent processes are the usual
from π-calculus (Rules [R-Par], [R-Res], [R-Struct]).

As an example, consider the processes:

P1 = un y1(t).tfalse.0 P2 = lin y1(w).wtrue.0 P3 = x1x2.y2(z).az.0

P = (νx1y1)(νx2y2)(P1 | P2 | P3)

Starting from P , there are two possible sequences of reductions depending
on the processes involved in the initial synchronization in the co-variables x1,
y1. If the synchronization involves P1 and P3 then we have:

P −→ . . . −→ (νx1y1)(νx2y2)(P1 | P2 | afalse.0)

On the other hand, if P2 and P3 synchronize then we have:

P −→ . . . −→ (νx1y1)(νx2y2)(P1 | atrue.0)

The standard form of a process, defined in [10], will be crucial for the ex-
ecutable specification of the reduction semantics. Intuitively, a process is in
standard form whenever restrictions are expanded as much as possible. More
precisely, we say P is in standard form if it matches the pattern expression
(νx1y1)(νx2y2) . . . (νxnyn)(P1 | P2 | . . . | Pk), where each Pi is a process of the
form xv.Q, qx(y).Q, x / l.Q or .{li : Qi}i∈I . Every process is structurally con-
gruent to a process in standard form.

3 Rewriting Semantics for sπ

Syntax Our rewriting semantics for sπ adapts the one in [9], which is defined
for an untyped π-calculus without sessions. There is a direct correspondence
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between the syntactic categories (values, variables, qualifiers, and terms) and
Maude sorts (Value, Chan, Qualifier, and Trm, respectively). We also have
some auxiliary sorts such as Guard, Choice, and Choiceset.

sorts Value Chan Qualifier Trm Guard Choice Choiceset .

subsort Choice < Choiceset .

subsort Chan < Value .

op _{_} : Qid Nat -> Chan [prec 1] .

ops lin un : -> Qualifier [ctor] .

ops True False : -> Value [ctor] .

op __(_) : Qualifier Chan Qid -> Guard [ctor prec 5] .

op _<_> : Chan Value -> Guard [ctor prec 6] .

op nil : -> Trm [ctor] .

op new[__]_ : Qid Qid Trm -> Trm [ctor prec 10] .

op _|_ : Trm Trm -> Trm [ctor assoc comm prec 12 id: nil] .

op if_then_else_fi : Value Trm Trm -> Trm [ctor prec 8] .

op _ << _._ : Chan Qid Trm -> Trm [ctor prec 15] .

op _ >> {_} : Chan Choiceset -> Trm [ctor prec 17] .

op _._ : Guard Trm -> Trm [ctor prec 7] .

op _:_ : Qid Trm -> Choice .

op empty : -> Choiceset [ctor] .

op __ : Choiceset Choiceset -> Choiceset [ctor assoc comm id: empty] .

Following the syntax in Section 2, values can be variables or booleans. We
represent booleans as the constructors True and False whereas we distinguish
variables (sort Chan) as values through the subsort relation. The only construc-
tor for variables _{_} takes a Qid and a natural number. Each production rule
for processes is represented using a constructor, as expected. Notice that the
constructor for input guards __(_) is preceded by a qualifier. Process 0 is de-
noted as nil and a single guarded term is represented by the constructor _._.
The constructor for scope restriction new[__]_ uses two instances of Qid, since
it declares a pair of co-variables. The constructor for conditionals is paramet-
ric on an instance of Value. We add constructors for selection and branching
process terms; their definition is as expected. In particular, the constructor for
branching processes relies on instances of Choiceset, which consists of sets of
pairs of Qid and process terms. We use instances of Qid to represent labels.

Substitutions As we have seen, the semantics of sπ relies on substitutions of
variables with values. To deal with substitutions in Maude, we follow Thati
et al.’s approach [9] and use Stehr’s CINNI calculus [8], an explicit substitution
calculus, which provides a mechanism to implement α-conversion at the language
level. The idea behind CINNI is to syntactically associate each use of a variable x
to an index, which acts as a counter of the number of binders for x that are found
before it is used. In CINNI, there are three types of substitution operations:
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Type Meaning

Simple substitution [a := x] a{0} 7→ x [a := x] a{n + 1} 7→ a{n}
[a := x] b{m} 7→ b{m}

Shift substitution ↑a a{n} 7→ a{n + 1} ↑a b{m} 7→ b{m}
Lift substitution ⇑a (S) a{0} 7→ a{0} ⇑a (S) a{n + 1} 7→ ↑a (S a{n})

⇑a (S) b{m} 7→ ↑a (S b{m})

A simple substitution of a variable a for a variable x takes place if the index
of x is 0; the index is decreased by 1 otherwise. A shift substitution over a

increases by 1 the index and a substitution S can be lifted to skip one index.
Any substitution over a variable a has no effect on other variables.

We now present the definition of explicit subtitutions for sπ using an approach
similar to [8]. We firts present the definition of the variable substitutions. We
use the sort Subst and the substitution application is performed by the operator
__, which takes a substitution and a variable. We define the three substitutions
above as presented there, by means of some equations.

sort Subst .

op [_:=_] : Qid Value -> Subst .

op [shiftup_] : Qid -> Subst .

op [lift__] : Qid Subst -> Subst .

op __ : Subst Chan -> Chan .

eq [ a := v ] a{0} = v .

eq [ a := v ] a{s(n)} = a{n} .

ceq [ a := v ] b{n} = b{n} if a =/= b .

eq [ shiftup a ] a{n} = a{s(n)} .

ceq [ shiftup a ] b{n} = b{n} if a =/= b .

eq [ lift a S ] a{0} = a{0} .

eq [ lift a S ] a{s(n)} = [ shiftup a ] S a{n} .

ceq [ lift a S ] b{n} = [ shiftup a ] S b{n} if a =/= b .

Equipped with these elements, we adapt to the sπ syntax the equations as-
sociated to the explicit substitutions for the process terms as follows:

op __ : Subst Trm -> Trm [prec 3] .

op subst-aux : Subst Choiceset -> Choiceset .

eq S nil = nil .

eq S (new [x y] P) = new [x y] ([lift x S] [lift y S] P) .

eq S (q a(y) . P ) = q (S a)(y) . ([lift y S] P) .

eq S (a < b > . P) = (S a) < (S b) > . (S P) .

ceq S (a < v > . P) = (S a) < v > . (S P) if v == True or v == False .

ceq S (if v then P else Q fi) = if v then (S P) else (S Q) fi

if v == True or v == False .

eq S (a >> {CH}) = (S a) >> { subst-aux(S, CH) } .

eq S (a << x . P) = (S a) << x . (S P) .

eq S (P | Q) = (S P) | (S Q) .

eq subst-aux(S, empty) = empty .

eq subst-aux(S, (x : P) CH) = (x : (S P)) subst-aux(S, CH) .
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In each equation, we deal with a specific production rule for process terms. In
each process, the substitution S is applied in each variable and each subprocess
as expected. Particularly, a lift substitution is performed over x, y and S to skip
the index 0 and perform the substitution in the remaining indices for the scope
restriction operator. In this way, the substitution S has the expected effect.

Structural Congruence To represent the rules in Fig. 1, we exploit the Maude
equational attributes assoc, comm, and id to declare the associative, commuta-
tive, and identity axioms for parallel composition, with process nil acting as
its identity. This suffices to cover the rules on the two first lines of Fig. 1. The
remaining rules are explicitly declared as equations below:

eq new[x y] nil = nil .

ceq P | new[x y] Q = new [x y] (Q | [shiftup x] [shiftup y] P)

if P =/= nil /\ Q =/= nil /\ CS := freenames(P) /\

x{0} in CS and y{0} in CS .

eq if True then P else Q fi = P .

eq if False then P else Q fi = Q .

ceq P | new[x y] Q = new [x y] (Q | [shiftup x] P)

if P =/= nil /\ Q =/= nil /\ CS := freenames(P) /\

x{0} in CS and not y{0} in CS .

ceq P | new[x y] Q = new [x y] (Q | [shiftup y] P)

if P =/= nil /\ Q =/= nil /\ CS := freenames(P) /\

not x{0} in CS and y{0} in CS .

ceq P | new[x y] Q = new [x y] (Q | P)

if P =/= nil /\ Q =/= nil /\ CS := freenames(P) /\

not x{0} in CS /\ not y{0} in CS .

In particular, scope extrusion is represented through four equations correspond-
ing to the four cases in the presence of x, y in the free names of process P.
Function freenames stands for the Maude implementation for function fn over
processes.

Operational Semantics Combined, the Maude rewriting rules, the equational
attributes, and the explicit equations associated to variables of sort Trm can
appropriately express the reduction semantics of sπ and manipulate terms in
a compositional fashion. A process is reduced to a simpler equivalent form by
virtue of the equational theory; a process is rewritten as long as it satisfies the
structure required for a rule wherever the process is located. As a consequence,
subprocesses are also rewritten and we do not need to explicitly represent the
contextual rules ([R-Par] and [R-Res]).

A process is converted into standard form using the explicit congruence rules.
This way, the scope of every unguarded occurrence of the new operator is ex-
tended to the top level.

Process interaction in sπ can only occur through co-variables and therefore
processes that are involved must be underneath a scope restriction over such
co-variables. Nonetheless, since in the standard form the order of the unguarded
ocurrences of the new operator is irrelevant, it would be necessary to explicitly
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look for the processes that are enabled to interact, which would affect the ef-
ficiency of the rewriting specification. To counter this, we include an auxiliary
operator, dubbed new*, which declares a list of pairs of new co-variables, rather
than just a single pair. This is equivalent to using nested new operators, i.e., the
term new* [x1 y1 x2 y2 ... xn yn] P is equivalent to the term

new [x1 y1] new [x2 y2] ... new [xn yn] P.

We declare the constructor for the sort QidSet with the equational attribute
comm to impose that the order among the pairs of new co-variables is not dis-
tinguished. In this way, whatever they are the process to interact, these will be
underneath a scope restriction new* and the interaction will be enabled.

sorts QidPair QidSet . subsort QidPair < QidSet .

op __ : Qid Qid -> QidPair [ctor] .

op mt : -> QidSet [ctor] .

op __ : QidSet QidSet -> QidSet [ctor comm assoc id: mt] .

op new* [_] _ : QidSet Trm -> Trm [ctor] .

Given a process P , let us write JP K to denote its representation in Maude.
A reduction rule P −→ Q can be associated to a rewriting rule l : JP K => JQK.
The reduction rules can be stated as follows:

crl [FLAT] : P => P’ if P’ := flatten(P) /\ P =/= P’ .

rl [LINCOM] : new* [(x y) nl] x{N} < v > . P | lin y{N}(z) . Q | R =>

new* [(x y) nl] P | [z := v] Q | R .

rl [UNCOM] : new* [(x y) nl] x{N} < v > . P | un y{N}(z) . Q | R =>

new* [(x y) nl] P | [z := v] Q | un y{N}(z) . Q | R .

rl [CASE] : new* [(x y) nl] (x{N} << w . P) |

(y{N} >> { (w : Q) CH }) | R => new* [(x y) nl] P | Q | R .

Rule FLAT normalizes the whole process. In this sense, additional to the implicit
rewriting performed by the equations associated to the congruence rules, the
nested new declarations are stated as a flat declaration new*. We use an auxiliary
operation flatten, which is defined as follows:

op flatten : Trm -> Trm .

eq flatten(new [x y] P) = flatten(new* [x y] P) .

eq flatten(new* [nl] new [x y] P) = flatten(new* [nl x y] P) .

eq flatten(new* [nl] new* [nl’] P) = flatten(new* [nl nl’] P) .

eq flatten(P) = P [owise] .

Rules LINCOM, UNCOM and CASE correspond to the specification of the reduction
rules related to synchronization in the calculus semantics (see Fig. 2). In these
rules, nl stands for the additional co-variables being declared. As expected, Rules
LINCOM, and UNCOM perform a substitution of the variable z for the value v.

We include also some equations which capture natural equivalences for pro-
cesses involving the auxiliary operator new*.
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eq new* [nl] nil = nil .

eq new* [x y nl] y{N} < v > . P | q x{N}(z) . Q | R =

new* [y x nl] y{N} < v > . P | q x{N}(z) . Q | R .

eq new* [x y nl] (y{N} << w . P) | (x{N} >> { CH }) | R =

new* [y x nl] (y{N} << w . P) | (x{N} >> { CH }) | R .

Given a pair x y of co-variables, we assume that the first action of x is an
output or a selection and the first action y is an input or a branching. The last
two equations swap x and y when this is not the case, to enable the execution
of the rewriting rules.

Our rewriting specification enables us to directly execute a possible sequence
of reductions over a process using the Maude command ‘rew’. In this way, we can
obtain a stable (final) reachable process, which cannot reduce further. Moreover,
we can use the reachability command ‘search’ to: (i) perform all possible se-
quence of reductions of a process and obtain every possible stable process and (ii)
check whether a process that fits some pattern is reachable or if a specific process
is reachable. In Section 4, we leverage commands ‘search’ and ‘modelCheck’ to
detect deadlocked sπ processes.

Specification Correctness The transition system associated to our rewrite theory
in Maude can be shown to coincide with the reduction semantics in Section 2.
This operational correspondence result is detailed in Appendix A.

4 Algorithmic Type Checking for sπ

4.1 Type Syntax

We present a Maude implementation of the algorithmic type checking given
in [10]. The type system considers typing contexts, denoted Γ , which associate
each variable to a specific type, denoted T . Typing contexts and types are defined
inductively as follows:

Γ ::= ∅ | Γ, x : T q ::= lin | un

p ::= ?T.T | !T.T | &{li : Ti}i∈I | ⊕ {li : Ti}i∈I
T ::= bool | end | q p | a | µa.T

where q stands for qualifiers and p stands for pretypes. Moreover, x denotes a
variable, each li denotes a label and a denotes a general variable. For simplicity,
we assume a single basic type for values (bool). Each variable is associated to
a (session) type, which represents its intended protocol. In the above grammar,
these types correspond to qualified pretypes. The pretype ?T1.T2 (resp. !T1.T2) is
assigned to a variable that first receives (resp. sends) a value of type T1 and then
proceeds to type T2. The pretype &{li : Ti}i∈I (resp. ⊕{li : Ti}i∈I) is assigned
to a variable that can offer (resp. select) li options and continues with type Ti
depending on the label selected. The type end (empty sequence) denotes the
type of a variable where no interaction can occur. Recursive types can express
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infinite sequences of actions; in the type µa.T , a corresponds to a type variable
that must occur guarded in T .

We encode session types in Maude by associating the non-terminals context,
qualifiers, pretypes, and types to sorts Context, Qualifier, Pretype, and Type.

sorts Pretype Type Context ChoiceT ChoiceTset .

subsort ChoiceT < ChoiceTset .

op ?_._ : Type Type -> Pretype . op !_._ : Type Type -> Pretype .

op +{_} : ChoiceTset -> Pretype . op &{_} : ChoiceTset -> Pretype .

ops bool end : -> Type . op __ : Qualifier Pretype -> Type .

op u [_] _ : Qid Type -> Type . op var : Qid -> Type .

ops nil invalid-context : -> Context .

op _:_ : Value Type -> Context .

op _,_ : Context Context -> Context [ctor assoc comm id: nil] .

op _:_ : Qid Type -> ChoiceT . op empty : -> ChoiceTset .

op __ : ChoiceTset ChoiceTset -> ChoiceTset [assoc comm id: empty] .

Each production rule is given as a specific constructor. In particular, con-
structors +{_} and &{_} represent the pretypes ⊕{li : Ti}i∈I and &{li : Ti}i∈I ,
respectively. The pairs of labels li and subtypes Ti are defined as instances of the
sort ChoiceTset. The recursive type µa.T is given as the constructor u [_] _

and the type variables are given as the constructor var. Typing contexts are
defined as expected. An empty context is denoted as nil whereas a single con-
text is associated to the constructor _:_. General contexts are provided by the
constructor _,_, which is annotated with the equational attributes assoc, comm
and id since the order is irrelevant in typing contexts and the construction is
associative. Finally, we added a constant invalid-context to be used in the
type checking to denote a typing error.

4.2 Algorithmic Type Checking

We follow the algorithmic type checking proposed in [10]. This type system
enables to type check the sπ processes from Section 2, with a minor caveat:
algorithmic type checking uses processes in which the restriction operator has
a corresponding type annotation, i.e., it uses (νxy : T )P instead of (νxy)P .
Consequently, we add a constructor for the sort Trm in the Maude specification:

op new[__:_]_ : Qid Qid Type Trm -> Trm [ctor prec 28] .

Following [10], we implement the type checking algorithm by relying on some
auxiliary functions for type duality (i.e., compatibility), type equality, and con-
text update and difference, among others. They are implemented by means of
functions and equations in Maude. Appendix B gives the details of the Maude
implementation for type duality (function dual), context update (function +),
and the context difference (function \).

Algorithmic type checking is expressed by using sequents of the form Γ1 `
v : T ;Γ2 for values and Γ1 ` P : Γ2;L for processes. These two sequents have an
input-output reading: sequent Γ1 ` v : T ;Γ2 denotes an algorithm that takes Γ1
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Γ ` true : bool;Γ [A-True] Γ1, x : lin p, Γ2 ` x : lin p; (Γ1, Γ2) [A-LinVar]

Γ ` false : bool;Γ [A-False]
un(T )

Γ1, x : T, Γ2 ` x : T ; (Γ1, x : T, Γ2)
[A-UnVar]

Fig. 3. Typing rules for values, Γ ` v : T ;Γ

and v as input and returns T and Γ2 as output; similarly, sequent Γ1 ` P : Γ2;L
denotes an algorithm that takes Γ1 and P as input and produces Γ2 and L as
output. While Γ2 is a residual context, the set L collects linear variables occurring
in subject position. Intuitively, L tracks the linear variables that are used in P to
prevent that they are used again in another process. Both algorithms are given
by means of typing rules, which we specify in Maude as an equational theory.

Fig. 3 shows the typing rules for values, which correspond to the rules in [10].
The rules for boolean values [A-True] and [A-False] produce as results the
type bool and the input context Γ remains unaltered. There are two rules for a
variable x: if x has a linear type lin p then the entry x : lin p is removed from
the returned context (Rule [A-LinVar]); otherwise, if x is unrestricted then the
entry x : T is kept in the returned context (Rule [A-UnVar]). The algorithm for
type checking of values is then implemented as a function type-value, which is
defined as follows:

op type-value : Context Value -> TupleTypeContext .

eq type-value(C, True) = [C bool] . ---[A-TRUE]

eq type-value(C, False) = [C bool] . ---[A-FALSE]

ceq type-value(((a : T), C), a) = [((a : T), C) unfold(T)] ---[A-UNVAR]

if unrestricted(T) .

eq type-value(((a : lin p), C), a) = [C (lin p)] . ---[A-LINVAR]

eq type-value(((a : u [x] T), C), a) =

type-value(((a : unfold(u [x] T)), C), a) . ---[A-LINVAR]

eq type-value(C, v) = ill-typed [owise] .

Function type-value produces an instance of the sort TupleTypeContext. This
sort groups a context and a type or a set of variables and it has only one con-
structor [_ _]. The equations related to the typing of boolean values arise as
expected, according to the corresponding typing rule. In those cases, a tuple
that contains the unmodified context and the type bool is produced. For un-
restricted variables, given that some types are infinite then, before the update,
the unrestricted types are unfolded (cf. the unfold operation). Unfolding is the
mechanism defined in [10] to deal with infinite types: If a type T is a recursive
type µa.U then the substitution U [µa.U/a] is performed. Otherwise, the type T
remains unaltered. For linear variables, we also unfold the type when necessary
and the linear type is returned and removed from the context.

Fig. 4 shows some of the typing rules for sπ processes; they largely correspond
to the rules in [10].
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Γ ` 0 : Γ ; ∅ Γ1 ` P : Γ2;L1 Γ2 ÷ L1 ` Q : Γ3;L2

Γ1 ` P | Q : Γ3;L2
[A-Inact] [A-Par]

Γ1, x : T, y : T ` P : Γ2;L

Γ1 ` (νxy : T ) P : Γ2 ÷ {x, y};L\{x, y}
[A-Res]

Γ1 ` v : q bool;Γ2 Γ2 ` P : Γ3;L Γ2 ` Q : Γ3;L

Γ1 ` if v then P else Q : Γ3;L
[A-If]

Γ1 ` x : q!T.U ;Γ2 Γ2 ` v : T ;Γ3 Γ3 + x : U ` P : Γ4;L

Γ1 ` xv.P : Γ4;L ∪ (if q = lin then {x} else ∅) [A-Out]

Γ1 ` x : q2?T.U ;Γ2 (Γ2, y : T ) + x : U ` P : Γ3;L q1 = un⇒ L\{y} = ∅
Γ1 ` q1x(y).P : Γ3 ÷ {y};L\{y} ∪ (if q2 = lin then {x} else ∅) [A-In]

Γ1 ` x : q&{li : Ti}i∈I ;Γ2 Γ2 + x : Ti ` Pi : Γ3;Li ∀i∈I,j∈I Li\{x} = Lj\{x}
Γ1 ` x . {li : Pi}i∈I : Γ3;L ∪ (if q = lin then {x} else ∅)

[A-Branch]

Γ1 ` x : q ⊕ {li : Ti}i∈I ;Γ2 Γ2 + x : Tj ` P : Γ3;L j ∈ I
Γ1 ` x / lj .P : Γ3;L ∪ (if q = lin then {x} else ∅) [A-Sel]

Fig. 4. Typing Rules for Processes, Γ ` P : Γ ;L

Rule [A-Inact] proceeds as expected. Process 0 is well-typed and the typing
context Γ remains unaltered and the set of linear variables is empty. Rule [A-Par]
handles parallel composition: to check a process P | Q over a context Γ1, the type
of P is checked and the resulting context Γ2 is used to type-check process Q,
making sure that the linear variables used for P are first removed by using the
context difference function (Γ2 ÷L1). This ensures that free linear variables are
used only once. The output of the algorithm for Q (context Γ3 and set L2) then
corresponds to the ouput of the entire process P | Q. Rule [A-Res] type-checks
a process (νxy : T )P in a context Γ1: it first checks the type of sub-process P in
the context Γ1 extended with the association of variables x, y to the type T and
its dual type, denoted T . It is expected that if type T (T ) is linear then it should
not be in the resulting context Γ2; otherwise, if type T (T ) is unrestricted then
it will appear in Γ2. We require that variables x, y are deleted from the residual
context (Γ2 ÷ {x, y}) and from the set L of linear variables.

Rule [A-If] verifies that type of value v is bool in the context Γ1, and requires
that the typecheck of P and Q in the context Γ2 generate the same residual con-
text Γ3 and the same set L, since both processes should use the same linear
variables. Rule [A-Out] handles output processes: it uses the incoming context
Γ1 to check the type of x, which should be of the form q!T.U . Then, it checks
that the type of v in the residual context Γ2 is T . The type of the continuation
P is checked in a new context Γ3 extended with the association of x and the con-
tinuation type U . The rule enforces that types q!T.U and U must be equivalent
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when x is unrestricted (i.e., q = un). The rule returns a context Γ4 and a set of
variables L joined with x, if linear. Rule [A-In] presents some minor modifica-
tions with respect to the one in [10]. We require that in the case of replication
there are no (free) subjects on linear variables in process P except possibly the
input variable y. Other than this, this rule is similar to Rule [A-Out].

Rule [A-Sel] looks the type of x in the incoming context Γ1. This type must
be of the form q⊕{li : Ti}i∈I . Subsequently, the continuation P is type-checked
under the resulting context Γ2 updated with a new assumption for x, which is
associated to a type Tj . In this way, when q = un we must have ⊕{li : Ti}i∈I =
Tj . This rule produces as result the context Γ3 and the set of linear variables L is
augmented with x if linear. Context Γ3 and set L also corresponds to the output
of the type checking of process P . Finally, we have Rule [A-Branch], which
has some minor modifications with respect to the rule in [10]. More precisely,
this rule has been changed to require that the sets of (free) subjects on linear
variables Li only differ in the input variable y. The additional details of this rule
is quite similar to Rule [A-Sel].

As an example of type checking, if T = lin !bool.lin ?bool.end then we can
establish the following sequent:

a : bool ` (νx1y1 : T )(lin y1(v).y1v.0 | x1a.lin x1(z).0) : (a : bool); {x1, y1}

The algorithm for type-checking processes is implemented as a function
type-term that receives an instance of the sort Context and an instance of
the sort Trm. Moreover, it produces an instance of the sort TupleTypeContext

that groups the resulting typing context and the set L of linear variables that
were collected during type-checking. Each rule is implemented by an equation:

op type-term : Context Trm -> TupleTypeContext .

eq type-term(C, nil) = [C mt] . --- [A-INACT]

ceq type-term(C, P | Q) = [C2 L2] --- [A-PAR]

if [C1 L1] := type-term(C, P) /\

[C2 L2] := type-term(C1 / L1, Q) .

ceq type-term(C, new [x y : T] P) = --- [A-RES]

[(C1 / (x{0} y{0})) remove(remove(L1, x{0}), y{0})]

if [C1 L1] := type-term((C, (x{0} : T), (y{0} : dual(T))), P) .

ceq type-term(C, if v then P else Q fi) = [C2 L1] --- [A-IF]

if [C1 bool] := type-value(C, v) /\

[C2 L1] := type-term(C1, P) /\ [C2 L1] := type-term(C1, Q) .

ceq type-term(C, a < v > . P) = --- [A-OUT]

[C3 (if q == lin then (L1 a) else L1 fi)]

if [C1 (q ! T . U)] := type-value(C, a) /\

[C2 T’] := type-value(C1, v) /\ /\ equal(T, T’)

[C3 L1] := type-term((C2 + a : U), P) .

ceq type-term(C, un a(y) . P) = [(C2 / y{0}) mt] --- [A-IN]

if [C1 (un ? T . U)] := type-value(C, a) /\

[C2 L] := type-term((C1, (y{0} : T)) + a : U, P) /\

remove(L, y{0}) == mt .

ceq type-term(C, lin a(y) . P) = --- [A-IN]
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[(C2 / y{0}) (remove(L, y{0})

(if q == lin then a else mt fi))]

if [C1 (q ? T . U)] := type-value(C, a) /\

[C2 L] := type-term((C1, (y{0} : T)) + a : U, P) .

ceq type-term(C, a>>{CH}) = check-branch(C1, a, CH, CHT,q) ---[A-BRANCH]

if [C1 (q & { CHT })] := type-value(C, a) .

ceq type-term(C, a << x . P) = ---[A-SEL]

[C2 (if q == lin then (L1 a) else L1 fi)]

if [C1 (q + { (x : T) CHT })] := type-value(C, a) /\

[C2 L1] := type-term((C1 + a : T), P) .

eq type-term(C, P) = ill-typed [owise] .

When type checking is successful, function type-term produces an outgo-
ing type context and a set of variables. Those elements are grouped using the
constructor [_,_], which is associated to the sort TupleTypeContext. We use a
Maude comment to annotate each equation with the corespondent typing rule.
The correspondence is quite intuitive; we highlight some important details. An
empty set of variables is represented with the constant mt. We remark that the
operator / stands for the context difference operation that removes some vari-
ables of a type context, whereas operator ‘remove’ drops a variable of a variable
set. In the equation for Rule [A-Out], we do not use the same variable T in
the type associated to variable a and the type associated to value v as it would
be expected, since the types are possibly infinite and there are many possible
representations for the same infinite type. Instead, we use another variable T’

and we check that T and T’ are equivalent, using function equal.
We divide Rule [A-In] in two different equations for linear and unrestricted

inputs. In the linear case, it is possible that the type of the subject a is linear or
unrestricted; when the variable is linear it must be included in the returned set
of linear variables. In the unrestricted case, the type of subject a is required to be
unrestricted inasmuch as the attempt to use a linear variable in an unrestricted
fashion must be rejected. Moreover, we require that the only free linear variable
used in process P is y{0} (condition remove(L, y{0}) == mt).

4.3 Type Soundness

Vasconcelos [10] established that the type system for sπ is sound : a closed,
well-typed process is guaranteed to have a well-defined behavior according to
the ascribed protocols and the reduction semantics of the calculus. Also, the
algorithmic type checking, as implemented in this section, is proven correct.
With these elements in mind, we can integrate both the rewriting specification
of the operational semantics and the implementation of the algorithmic type
checking. This way, we only execute well-typed processes. For this purpose, we
use two auxiliary functions well-typed and erase. The former checks whether
a process does not have typing errors:

op well-typed : Trm -> Bool .

eq well-typed(P) = (type-term(nil, P) =/= ill-typed) .
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Function well-typed applies the algorithm for type checking type-term over
a process P and returns true when type-checking is successful, i.e. when the
result is not ill-typed. Function erase proceeds inductively on the structure
of a process; when it reaches an annotated subprocess ‘new [x y : T] P’, it
removes the annotation to produce ‘new [x y] P’—see Appendix B for details.

Correspondingly, we extend our specification of the reduction semantics to
enable the execution of annotated processes, i.e., processes that use the operator
(νxy : T )P instead of the operator (νxy)P :

rl [TYPED] : new [x y : T] P => if well-typed(new [x y : T] P)

then erase(new [x y] P) else ill-typed-process fi .

We check whether process new [x y : T] P is well-typed; if so, we rewrite it as
an equivalent process in which each occurrence of new [x y : T] is replaced by
new [x y] through the function erase. Otherwise, process new [x y : T] P is
rewritten as ill-typed-process, a constant that denotes that the process has
a typing error and cannot be executed.

5 Lock and Deadlock Detection in Maude

Although the type system for sπ given in [10] enables us to statically detect pro-
cesses whose variables are used according to their ascribed protocols (expressed
as session types), there are processes that are well-typed but that exhibit un-
wanted behaviors, in particular deadlocks. For example, consider the process

P = x3true.x1true.y2false.0 | lin y3(z).lin x2(w).lin y1(t).0

Process P is well-typed in a context x1 : lin !bool.end, y1 : lin ?bool.end, x2 :
lin ?bool.end, y2 : lin !bool.end, x3 : lin !bool.end, y3 : lin ?bool.end. Then, process
(νx1y1x2y2x3y3)P can reduce but becomes deadlocked after such a synchroniza-
tion, due to a circular dependency on variables x1, y1, x2, y2.

5.1 Definitions

Here we characterize deadlocks in sπ and we show how we can use the rewrite
specification of the operational semantics and the Maude tools for detecting
processes with deadlocks. We follow the formulation of deadlock and lock freedom
given by Padovani [3], which uses the notion of pending communication. We start
by defining the reduction contexts C:

C ::= [ ] | (C | P ) | (νxy)C
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The notion of pending communication in a process P with respect to variables
x, y is defined with the following auxiliary predicates:

in(x, P )
def⇐⇒ P ≡ C[lin x(y).Q] ∧ x 6∈ bn(C)

in∗(x, P )
def⇐⇒ P ≡ C[un x(y).Q] ∧ x 6∈ bn(C)

out(x, P )
def⇐⇒ P ≡ C[xv.Q] ∧ x 6∈ bn(C)

sync(x, y, P )
def⇐⇒ (in(x, P ) ∨ in∗(x, P )) ∧ out(y, P )

wait(x, y, P )
def⇐⇒ (in(x, P ) ∨ out(y, P )) ∧ ¬sync(x, y, P )

There, we assume the extension of function bn(.) to reduction contexts. Intu-
itively, the first three predicates express the existence of a pending communica-
tion on a variable x. More in details:

– Predicate in(x, P ) holds if x is free in P and there is a subprocess of P
that is able to make a linear input on x. Predicate in∗(x, P ) is its analog for
unrestricted inputs.

– Predicate out(x, P ) holds if x is free in P and a subprocess of P is waiting
to send a value v.

– Predicate sync(x, y, P ) denotes a pending input on x for which a synchro-
nization on y is immediately possible.

– Predicate wait(x, y, P ) denotes a pending input/output for which a synchro-
nization on x, y is not immediately possible.

Let us write −→∗ to denote the reflexive, transitive closure of −→. Also, write
P 9 if there is no Q such that P −→ Q. With these elements, we now proceed
to characterize the deadlock and lock freedom properties. We say process P is

– deadlock free if for everyQ such that P −→∗ (νx1y1)(νx2y2) . . . (νxnyn)Q9
it holds that ¬wait(xi, yi, Q) for every xi.

– lock free if for every Q such that P −→∗ (νx1y1)(νx2y2) . . . (νxnyn)Q and
wait(xi, yi, Q) there exists R such that Q −→∗ R and sync(xi, yi, R) hold.

This way, a process is deadlock free if there are not stable states with pending
inputs or outputs; a process is lock free if it is able to eventually perform a
synchronization in any pending input or output.

We can use Maude to verify deadlock freedom and lock freedom for typed
processes. Indeed, we can use the reachability tool search and the LTL model
checker modelCheck. We first represent the previous predicates over process
terms as functions in Maude over instances of the sorts Trm and Chan:

ops in out in* : Chan Trm -> Bool .

ops sync wait : Chan Chan Trm -> Bool .

op wait-aux : QidSet Trm -> Bool .

eq in(a, lin a(x) . Q | R) = true .

eq in(a, P) = false [owise] .

eq in*(a, un a(x) . Q | R) = true .

eq in*(a, P) = false [owise] .
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eq out(a, a < v > . Q | R) = true .

eq out(a, P) = false [owise] .

eq sync(a, b, P) = (in(a, P) or in*(a, P)) and out(b, P) .

eq wait(a, b, P) = (in(a, P) or out(b, P)) and not sync(a, b, P) .

eq wait-aux(mt, P) = false .

eq wait-aux((x y) nl, P) = wait(x{0}, y{0}, P) or

wait(y{0}, x{0}, P) or wait-aux(nl, P) .

Above, we use function wait-aux to determine if a group of pairs of co-
variables contains a pair for which there is a pending communication.

The deadlock freedom property imposes that there should be no stable states
in which there are pending communications. Consequently, we can use the Maude
command search as follows to determine whether a process is deadlock free:

search init =>!

new* [nl:QidSet] P:Trm such that wait-aux(nl:QidSet, P:Trm) .

where init denotes for the process to be checked. We recall that the search

command with the arrow =>! looks for final (stable) states. In this way, init is
deadlock free if the search returns no solution.

For the lock freedom property, we can not use the reachability tool since
this property requires the checking some intermediate states. Consequently, we
represent the lock freedom property as an LTL formula and use the built-in
LTL model checker in Maude. Below, we define the Maude predicates psync and
pwait that we will use in the LTL model checker:

ops pwait psync : Chan Chan -> Prop [ctor] .

eq new* [(x y) nl] P |= pwait(x{0}, y{0}) =

wait(x{0}, y{0}, P) or wait(y{0}, x{0}, P) .

eq new* [(x y) nl] P |= psync(x{0}, y{0}) =

sync(x{0}, y{0}, P) or sync(y{0}, x{0}, P) .

In the predicates psync and pwait, we use normalized processes, i.e., pro-
cesses where the nested scope restrictions are flattened in an equivalent process
that uses the operator new*. This assumption simplifies the definitions. Both
psync and pwait predicates use the functions in, in*, out, sync and wait as
expected according to the definition.

The Kripke structure that is generated for Maude will use such normalized
process term as states. The Maude predicates pwait and psync hold with respect
to a pair of dual variables if there is a pending communication and there is a
synchronization in the process associated to a state. The lock freedom property
imposes for each variable that if in any state there is a pending communication
then eventually there will be a synchronization. Formalizing the lock freedom
property requires to check each possible subject. For that reason, the LTL for-
mula associated to this property depends on the variables being used in the
process. We define a function build-lock-formula that takes the used vari-
ables and builds the corresponding LTL formula as follows:
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ops P1 P2 P3 P4 P5 : -> Trm .

eq P1 = new* [(’y1’ ’x1’)(’y2’ ’x2’)(’y3’ ’x3’)]

(’x3’{0} < True > . ’x1’{0} < True > . ’y1’{0} < False > . nil |

lin ’y3’{0}(’z’) . lin ’y2’{0}(’x’) . lin ’x2’{0}(’w’) . nil) .

eq P2 = new* [(’x1’ ’y1’)(’x2’ ’y2’)(’a’ ’b’)]

(’x1’{0} < ’b’{0} > . nil | ’a’{0} < True > . nil |

un ’y1’{0}(’z’) . ’x2’{0} < ’z’{0} > . nil |

un ’y2’{0}(’w’) . ’x1’{0} < ’w’{0} > . nil ) .

Fig. 5. Processes in Maude

op build-lock-formula : QidSet -> Formula .

eq build-lock-formula(mt) = True .

eq build-lock-formula((x y) nl) =

[] (<> pwait(x{0}, y{0}) -> <> psync(x{0}, y{0})) /\

build-lock-formula(nl) .

This way, the resulting LTL formula corresponds to the conjunction of subformu-
las associated to each dual variable. The model checker can be used as follows:

red modelCheck(init, build-lock-formula(vars)) .

where init stands for the process term and vars stands for a set of pairs of co-
variables. If the init is lock-free then the invocation of modelCheck will produce
true. Otherwise, the invocation will show a counterexample with a sequence of
rules that produces a state where the formula is not fulfilled.

5.2 Examples

We give a couple of examples of well-typed processes in sπ, with different lock-
and deadlock-freedom properties. (Appendix C presents additional examples.)

P1 = (νx1y1)(νx2y2)(νx3y3)(x3true.x1true.y1false.0 | lin y3(z).liny2(x).linx2(w).0)

P2 = (νx1y1)(νx2y2)(νab)(x1b.0 | atrue.0 | un y1(z).x2z.0 | un y2(w).x1w.0)

Process P1 is a simple process that reduces to a deadlock immediately after
a synchronization on the co-variables x3, y3. Process P2 represents an infinite
process where the variable b is repeatedly shared through communications on
x1, y1, x2, y2. The process is a not lock-free: b is never used to synchronize with
its co-variable a. Fig. 5 gives the Maude terms associated to these processes.

We analyze P1 using Maude by executing:

search P1 =>! new* [nl:QidSet] P:Trm

such that wait-aux(nl:QidSet, P:Trm) .

red modelCheck(P1,

build-lock-formula((’y1’ ’x1’)(’y2’ ’x2’)(’y3’ ’x3’))) .

We obtain the following results, which confirm that P1 is not deadlock free and
not lock free:
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search in TEST : P1 =>! new*[nl:QidSet]P:Trm

such that wait-aux(nl:QidSet, P:Trm) = true .

Solution 1 (state 1)

nl:QidSet --> (’x3’ ’y3’) (’y1’ ’x1’) ’y2’ ’x2’

P:Trm --> ’x1’{0} < True > . ’y1’{0} < False > . nil |

lin ’y2’{0}(’x’) . lin ’x2’{0}(’w’) . nil

No more solutions.

result ModelCheckResult: counterexample(

{new*[(’x3’ ’y3’) (’y1’ ’x1’) ’y2’ ’x2’]

’x3’{0} < True > . ’x1’{0} < True > . ’y1’{0} < False > . nil |

lin ’y3’{0}(’z’) . lin ’y2’{0}(’x’) . lin ’x2’{0}(’w’) . nil,

’LINCOM},

{new*[(’x3’ ’y3’) (’y1’ ’x1’) ’y2’ ’x2’]

’x1’{0} < True > . ’y1’{0} < False > . nil |

lin ’y2’{0}(’x’) . lin ’x2’{0}(’w’) . nil,

deadlock})

Consider now a similar execution for process P2:

search P2 =>! new* [nl:QidSet] P:Trm

such that wait-aux(nl:QidSet, P:Trm) .

red modelCheck(P2, build-lock-formula((’x1’ ’y1’)(’x2’ ’y2’)(’a’ ’b’))) .

We obtain the following results, which confirm that P2 is an infinite process
that is deadlock free but not lock free:

search in TEST : P2 =>! new*[nl:QidSet]P:Trm

such that wait-aux(nl:QidSet, P:Trm) = true .

No solution.

result ModelCheckResult: counterexample(nil,

{new*[(’a’ ’b’) (’x1’ ’y1’) ’x2’ ’y2’]

’a’{0} < True > . nil | ’x1’{0} < ’b’{0} > . nil |

un ’y1’{0}(’z’) . ’x2’{0} < ’z’{0} > . nil |

un ’y2’{0}(’w’) . ’x1’{0} < ’w’{0} > . nil, ’UNCOM}

{new*[(’a’ ’b’) (’x1’ ’y1’) ’x2’ ’y2’]

’a’{0} < True > . nil | ’x2’{0} < ’b’{0} > . nil |

un ’y1’{0}(’z’) . ’x2’{0} < ’z’{0} > . nil |

un ’y2’{0}(’w’) . ’x1’{0} < ’w’{0} > . nil, ’UNCOM})

6 Closing Remarks

In this paper, we have reported on an executable specification in Maude of
the operational semantics and the associated algorithmic type-checking of sπ,
a session-typed π-calculus proposed by Vasconcelos in [10]. We integrated both
specifications closely following his formulation. To our knowledge, ours is the
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first Maude implementation of a session-typed process language. Because typing
in [10] does not exclude deadlocks, we leverage built-in tools in Maude and ex-
ecutable specifications to detect well-typed dead-locked processes. In our view,
these developments establish a promising starting point to the automated anal-
ysis of message-passing concurrency specifications.

As future work, we intend to adapt our equational theories to leverage the
confluence checker tool available in Maude. Additionally, we expect to extend
our executable specifications to perform behavioral analysis of the processes
that implement multiparty session types, in the spirit of [7]. Likewise, we aim to
explore the automated analysis of communication correctness of an extension of
sπ with higher-order process communication, in which values can be abstractions
(functions from names to processes).
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A Operational Correspondence

Here we prove that the transition system associated to the rewrite theory in our
Maude specification coincides with the reduction semantics for sπ. Given an sπ
process P , we use the notation JP K to denote its representation in Maude. We
state the operational correspondence between them with two theorems, com-
pleteness and soundness:

Theorem 1 (Completeness). Let P an sπ process and let JP K be its corre-
sponding representation in the rewrite theory (Σ,E, φ,R) of Section 3. Then, if
P −→ P ′ then there is a rewriting rule l : JP K→ JP ′K that can be applied.

Proof. By induction on the reduction P −→ P ′, with a case analysis on the last
rule being applied. We have three base cases, corresponding to the forms of direct
communication in the calculus (Rules [R-LinCom], [R-UnCom], and [R-Case])
and three inductive cases (Rules [R-Par], [R-Res] and [R-Struct]). For each
case, we deepen in the correspondence with a rewriting rule l : JP K→ JP ′K.

1. Rule [R-LinCom]: This rule in the operational semantics of the calculus (see
Fig. 2) is stated as:

(νxy)(xv.P | lin y(z).Q | R) −→ (νxy)(P | Q[v/z] | R)

Then, we must show that there is a rewrite rule that corresponds to this rule,
i.e., we need to determine a rewrite rule in our rewrite theory such that:

J(νxy)(xv.P | lin y(z).Q | R)K −→ J(νxy)(P | Q[v/z] | R)K

The correspondence with the rewriting rule labeled LINCOM is quite intuitive:

new* [(x y) nl] x{N} < v > . P | lin y{N}(z) . Q | R =>

new* [(x y) nl] P | [z := v] Q | R .

Clearly, it holds that

J(νxy)(xv.P | lin y(z).Q | R)K =
new* [(x y) nl] x{N} < v > . P | lin y{N}(z) . Q | R

and

J(νxy)(P | Q[v/z] | R)K = new* [(x y) nl] P | [z := v] Q | R

where nl = mt. It is easy to check that in virtue of the mathematical
induction, any possible reduction involving subprocess R corresponds to a
different application of some reduction rule.

2. Rule [R-UnCom]: Then the reduction proceeds as follows:

(νxy)(xv.P | un y(z).Q | R) −→ (νxy)(P | Q[v/z] | un x(y).Q | R)

Again, we must show a corresponding rule in our rewrite theory such that:

J(νxy)(xv.P | un y(z).Q | R)K −→ J(νxy)(P | Q[v/z] | un x(y).Q | R)K

The correspondence with the rewrite rule UNCOM arises immediately:
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new* [(x y) nl] x{N} < v > . P | un y{N}(z) . Q | R =>

new* [(x y) nl] P | [z := v] Q | un y{N}(z) . Q | R .

Then, it is evident that

J(νxy)(xv.P | un y(z).Q | R)K =
new* [(x y) nl] xN < v > . P | un yN(z) . Q | R

and

J(νxy)(P | Q[v/z] | un x(y).Q | R)K =
new* [(x y) nl] P | [z := v] Q | un yN(z) . Q | R

where nl = mt. It is easy to check that in virtue of the mathematical induc-
tion, any possible reduction involving subprocess R corresponds to a different
application of some reduction rule.

3. Rule [R-Case] Then the reduction proceeds as follows:

j ∈ I
(νxy)(x / lj .P | y . {li : Qi}i∈I | R) −→ (νxy)(P | Qj | R)

As in the previous cases, there is also a quite intuitive correspondence with
the rule CASE in the rewrite theory:

new* [(x y) nl] (x{N} << w . P) | (y{N} >> { (w : Q) CH }) | R =>

new* [(x y) nl] P | Q | R .

As in the other cases, any possible reduction involving subprocess R corre-
sponds to a different application of some reduction rule.

4. Rules [R-Par], [R-Res]: These rules capture the compositionality of the
operational semantics but in themselves they do not express any additional
alternative of reduction. The effect of these rules is obtained for free in Maude
as an effect of the equational theory underlying the rewrite theory and due
to the rewriting rules in a system module of Maude allow to rewrite specific
subterms of a term.

– Rule [R-Par]: This rule in the operational semantics of the calculus is
stated as:

P −→ P ′

P | Q −→ P ′ | Q
We assume as inductive hypothesis that for a process P −→ P ′ it holds
that there is a rewriting rule l : JP K → JP ′K that can be applied. We
must show that there is a rewrite rule such that:

JP | QK −→ JP ′ | QK

Now, given that the rewriting rules in a system module of Maude allow
to rewrite specific subterms of a term, due to the Maude term JP | QK
contains the subterm JP K, then the term JP | QK will be rewritten to
JP ′ | QK by means the application of the same rewrite rule l.
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– Similarly, in the case of the Rule [R-Res], which is stated as:

P −→ P ′

(νxy)P −→ (νxy)P ′

We also assume as inductive hypothesis that for a process P −→ P ′ we
have a rewriting rule l : JP K→ JP ′K that can be applied. We must show
that there is a rewrite rule such that:

J(νxy)P K −→ J(νxy)P ′K

Again, the Maude term J(νxy)P K includes the subterm JP K and conse-
quently, the term J(νxy)P K will be rewritten to J(νxy)P ′K by using the
rewrite rule l.

5. Rule [R-Struct]: This rule captures the effect of the operational semantics
modulo the structural congruence relation. In this way, any possible reduc-
tion of a process P such that P ≡ Q is also possible for process Q. This rule
is clearly correspondent to the rewrite rule FLAT:

P => P’ if P’ := flatten(P) /\ P =/= P’ .

We recall that the function flatten produces an equivalent process where
the occurrences of the scope restriction operator are taken to the top-level.

ut

Theorem 2 (Soundness). Let T, T’ be instances of the sort Trm in the rewrite
theory (Σ,E, φ,R) of Section 3 and TC be the canonical form of T. Then, if there
is a rewrite rule l : TC → T′ that can be applied then there exist processes P , Q
such that T = JP K, T′ = JQK, and:

– P ≡ Q or
– P −→ Q

The rewriting rule l : T → T’ can be preceded for a sequence of applications
of some equations in the equational theory underlying the rewrite theory.

Proof. By a case analysis on the rewriting rule being applied over the Maude
term T and the correspondence with an sπ reduction. We have four cases cor-
responding to the rewrite rules FLAT, LINCOM, UNCOM, and CASE in the rewrite
theory. For each case, we deepen in the correspondence with a specific reduction
over processes P , Q related to the Maude term being rewritten. We remark that
there is a one-to-one correspondence between the process terms (see Section 2)
and the instances of the Maude sort Trm (see Section 3). For this reason, for each
Maude term P there is a process P such that P = JP K.

1. Rule FLAT: This rule is stated in Maude (see Section 3) as:

crl [FLAT] : P => P’ if P’ := flatten(P) /\ P =/= P’ .
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Here, the Maude term P is rewritten as the term P’, which is obtained by the
function flatten. As already mentioned, the function flatten produces an
equivalent process where the occurrences of the scope restriction operator
are taken to the top-level. Consequently, the Maude term P’ is the Maude
representation of a process Q such that Q ≡ P , as expected.

2. Rule LINCOM: This rule is stated in Maude (see Section 3) as:

new* [(x y) nl] x{N} < v > . P | lin y{N}(z) . Q | R =>

new* [(x y) nl] P | [z := v] Q | R .

Again, in virtue of the one-to-one correspondence among the process terms
syntax and the sort and constructors in the equational theory, we have that
there exist processes P and Q such that:

JP K = new* [(x y) nl] x{N} < v > . P | lin y{N}(z) . Q | R

JQK = new* [(x y) nl] P | [z := v] Q | R

Clearly, process P must be equivalent to a process matching a pattern
(νxy) . . . xv.P ′ | lin y(z).Q′ | R and process Q must be equivalent to a pro-
cess matching a pattern (νxy) . . . P ′ | Q′ | R. In consequence, it is easy to
check that P −→ Q, as expected.

3. Rule UNCOM: These rule is stated as follows (see Section 3):

new* [(x y) nl] x{N} < v > . P | un y{N}(z) . Q | R =>

new* [(x y) nl] P | [z := v] Q | un y{N}(z) . Q | R .

As before, it is easy to check that there exist processes P and Q for which
holds:

JP K = new* [(x y) nl] x{N} < v > . P | un y{N}(z) . Q | R

JQK = new* [(x y) nl] P | [z := v] Q | un y{N}(z) . Q | R

Then, process P is of the form (νxy) . . . xv.P ′ | un y(z).Q′ | R and process
Q is of the form (νxy) . . . P ′ | Q′ | un y(z).Q′ | R and P −→ Q, as expected.

4. Rule CASE: This rule is stated in the rewrite theory as:

new* [(x y) nl] (x{N} << w . P) | (y{N} >> { (w : Q) CH }) | R =>

new* [(x y) nl] P | Q | R .

Once again, in virtue of the one-to-one correspondence among the process
term syntax and the Maude sorts and constructors, we have that there exist
processes P and Q such that:

JP K = new* [(x y) nl] (x{N} << w . P) | (y{N} >> (w : Q) CH ) | R

JQK = new* [(x y) nl] P | Q | R

Process P is equivalent to a process matching the pattern (νxy) . . . x /
lj .P

′ | y . {li : Qi}i∈I | R and process Q is equivalent to a process match-
ing the pattern (νxy) . . . P ′ | Qj | R. Thereafter, we have that P −→ Q, as
expected.

ut
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end = end a = a µa.T = µa.T

q?T.U = q!T.U q!T.U = q?T.U

q ⊕ {li : Ti}i∈I = q&{li : Ti}i∈I q&{li : Ti}i∈I = q ⊕ {li : Ti}i∈I

Fig. 6. Definition of dual function

x : U 6∈ Γ
Γ + x : U = Γ, x : U

un(T )

(Γ, x : T ) + x : T = (Γ, x : T )

Γ ÷ ∅ = Γ
Γ1 ÷ L = Γ2, x : T un(T )

Γ1 ÷ (L, x) = Γ2

Γ1 ÷ L = Γ2 x 6∈ dom(Γ2)

Γ1 ÷ (L, x) = Γ2

Fig. 7. Definition of context update (up) and context difference (down)

B Omitted Material on Algorithmic Type Checking

The duality operation on session types is essential to enforce communication
correctness; it is defined in Fig. 6. In Maude, the operation dual, given next,
enables us to obtain the dual of a type. It takes an instance of the sort Type and
produces an instance of the same sort:

op dual : Type -> Type . op dual-aux : ChoiceTset -> ChoiceTset .

eq dual(end) = end . eq dual(var(x)) = var(x) .

eq dual(q ? T1 . T2) = q ! T1 . dual(T2) .

eq dual(q ! T1 . T2) = q ? T1 . dual(T2) .

eq dual(u [x] T) = u [x] dual(T) .

eq dual(q +{ CHT }) = q &{ dual-aux(CHT) } .

eq dual(q &{ CHT }) = q +{ dual-aux(CHT) } .

eq dual-aux(empty) = empty .

eq dual-aux((x : T) CHT) = (x : dual(T)) dual-aux(CHT) .

Each one the previous equations stands for a specific case in the definition
of the dual function in Fig. 6. The auxiliary operator dual-aux allows to apply
the dual function to each subtype in branching and selection types.

Another important operation in the algorithmic type checking is context up-
date, denoted ‘+’. This operation enables us to extend a type context with a new
type for a variable; it is used when checking the type of input, output, branching,
and selection processes. The formal definition is shown in Fig. 7 (top). There are
two rules: the first one requires linear variables not to be in the context and the
second one imposes updating an unrestricted variable is only possible if its type
is unchanged.
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The context update operation is implemented in Maude by means of the
operator _+_:_, which takes a type context, a value and a type and produces a
new context.

op _+_:_ : Context Value Type -> Context .

ceq C + v : T = (C, (v : T)) if not v in C .

ceq (C, (v : T1)) + v : T2 = (C, (v : T2’))

if unrestricted(T1) /\ T1’ := unfold(T1) /\

T2’ := unfold(T2) /\ equal(T1’, T2’) .

eq C + v : T = invalid-context [owise] .

Each rule is associated to a previous equation and it proceeds as expected.
Particularly, for the case of unrestricted variables, given that some types are
infinite then before the update the unrestricted types are unfolded (cf. operation
unfold). Type unfolding is the mechanism that we use to deal with infinite
types. Given a type T , it is defined as follows: if T is a recursive type µa.U then
unfolding means performing the substitution U [µa.U/a]. Otherwise, T remains
unaltered. The types T1 and T2 involved in the update operation are unfolded
and the resulting types must be equal. Lastly, we add an additional equation
to produce the constant invalid-context when the context update can not be
performed.

The context difference function, denoted ‘÷’, is the mechanism that prevents
the use of linear variables in several threads. This operation removes the variables
in a set from a typing context. This function is defined inductively as shown in
Fig. 7 (bottom). It is implemented in Maude as follows:

op _/_ : Context Chanset -> Context .

eq C / mt = C .

eq ((a : T), C) / (a L1) = C / L1 .

eq C / L1 = C [owise] .

On the other hand, the function erase (used in Section 4.3) inductively
analyzes a process; when it reaches an annotated subprocess (i.e. a process
new [x y : T] P), it returns a non-annotated process (i.e., a process new [x y] P).
This function is defined in Maude as follows:

op erase : Trm -> Trm .

op erase-aux : Choiceset -> Choiceset .

eq erase(nil) = nil .

eq erase(a < v > . P) = a < v > . erase(P) .

eq erase(q a(x) . P) = q a(x) . erase(P) .

eq erase(if v then P else Q fi) = if v then erase(P) else erase(Q) fi .

ceq erase(P | Q) = erase(P) | erase(Q) if P =/= nil and Q =/= nil .

eq erase(a >> {CH}) = a >> { erase-aux(CH) } .

eq erase(a << x . P) = a << x . erase(P) .

eq erase-aux(empty) = empty .

eq erase-aux((x : P) CH) = (x : erase(P)) erase-aux(CH) .
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eq erase(new [x y] P) = new [x y] erase(P) .

eq erase(new [x y : T] P) = new [x y] erase(P) .
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C Additional Examples of Lock and Deadlock Detection

C.1 Examples

We now present a few examples of well-typed processes in sπ, with different lock-
and deadlock-freedom properties:

P1 = (νx1y1)(νx2y2)(νx3y3)(x3true.x1true.y1false.0 | lin y3(z).liny2(x).linx2(w).0)

P2 = (νx1y1)(νx2y2)(νab)(x1b.0 | atrue.0 | un y1(z).x2z.0 | un y2(w).x1w.0)

P3 = (νzw)(νxy)(zx.lin y(v).0 | lin w(t).ttrue.0)

P4 = (νx1y1)(νx2y2)(νx3y3)(νx4y4)(νx5y5)(νx6y6)(
x2true.un x1(w).wx4.wy4.0 | lin y2(b).y4(z).x4a.0 | lin y6(a).lin y5(′b′).0 |
y1x3.lin y3(z).y3(t).za.t(c).x5true.x6false.0

)
P5 = (νx1y1)(νx2y2)(νx3y3)(νx4y4)(νx5y5)(

x1x2.y2 . {a : x3true.x4false.lin y4(c).0 b : x3false.y5x4.lin y4(c).0} |
un y1(z).z / a.lin y3(c).0 | lin y1(w).w / b.lin y3(c).lin x5(t).ttrue.0

)
Processes P1 and P2 were discussed in the main text. Some intuitions for the

other processes follow:

– Process P3 is a simple lock and deadlock free process.
– Process P4 is not deadlock free and not lock free. The deadlock is reached

after some synchronizations in the pairs of co-variables x1, y1, x2, y2, x3, y3
and x4, y4.

– Process P5 has a branching subprocess where a deadlock can be reached by
selecting the branch with label a.

Fig. 8 gives the Maude terms associated to these processes.

C.2 Detecting (dead)locks in Maude

We give the execution of both commands with respect to process P3, which is
deadlock and lock free:

search P3 =>! new* [nl:QidSet] P:Trm

such that wait-aux(nl:QidSet, P:Trm) .

red modelCheck(P3, build-lock-formula((’z’ ’w’) (’x’ ’y’))) .

We obtain:

search in TEST : P3 =>! new*[nl:QidSet]P:Trm

such that wait-aux(nl:QidSet, P:Trm) = true .

No solution.

reduce in TEST : modelCheck(P3, build-lock-formula((’x’ ’y’) ’z’ ’w’)) .

result Bool: true
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ops P1 P2 P3 P4 P5 : -> Trm .

eq P1 = new* [(’y1’ ’x1’)(’y2’ ’x2’)(’y3’ ’x3’)]

(’x3’{0} < True > . ’x1’{0} < True > . ’y1’{0} < False > . nil |

lin ’y3’{0}(’z’) . lin ’y2’{0}(’x’) . lin ’x2’{0}(’w’) . nil) .

eq P2 = new* [(’x1’ ’y1’)(’x2’ ’y2’)(’a’ ’b’)]

(’x1’{0} < ’b’{0} > . nil | ’a’{0} < True > . nil |

un ’y1’{0}(’z’) . ’x2’{0} < ’z’{0} > . nil |

un ’y2’{0}(’w’) . ’x1’{0} < ’w’{0} > . nil ) .

eq P3 = new* [(’z’ ’w’)(’x’ ’y’)]

(’z’{0}< ’x’{0} > . lin ’y’{0}(’v’) . nil) |

lin ’w’{0}(’t’) . ’t’{0} < True > . nil) .

eq P4 = new*[(’x1’ ’y1’)(’x2’ ’y2’)(’x3’ ’y3’)

(’x4’ ’y4’)(’x5’ ’y5’)(’x6’ ’y6’)]

(’x2’{0} < True > . un ’x1’{0}(’w’) . ’w’{0} < ’x4’{0} > .

’w’{0} < ’y4’{0} > . nil |

lin ’y2’{0}(’b’) . lin ’y4’{0}(’z’) . ’x4’{0} < ’a’{0} > . nil |

’y1’{0} < ’x3’{0} > . lin ’y3’{0}(’z’) . lin ’y3’{0}(’t’) .

’z’{0} < ’a’{0} > . lin ’t’{0}(’c’) . ’x5’{0} < True > .

’x6’{0} < False > . nil |

lin ’y6’{0}(’a’) . lin ’y5’{0}(’b’). nil) .

eq P5 = new*[(’x1’ ’y1’)(’x2’ ’y2’)(’x3’ ’y3’)(’x4’ ’y4’)(’x5’ ’y5’)]

(’x1’{0} < ’x2’{0} > .

(’y2’{0} >> {(’a’ : ’x3’{0} < True > . ’x4’{0} < False > .

lin ’y4’{0} (’c’) . nil)

(’b’ : ’x3’{0} < False > . ’y5’{0} < ’x4’{0} > .

lin ’y4’{0}(’c’) . nil)}) |

un ’y1’{0}(’z’) . (’z’{0} << ’a’ . lin ’y3’{0}(’c’) . nil) |

lin ’y1’{0}(’w’) . (’w’{0} << ’b’ . lin ’y3’{0}(’c’) .

lin ’x5’{0}(’t’) . ’t’{0} < True > . nil)) .

Fig. 8. Processes in Maude

We perform a similar analysis for the process P4 by using the commands:

search P4 =>! new* [nl:QidSet] P:Trm

such that wait-aux(nl:QidSet, P:Trm) .

red modelCheck(P4, build-lock-formula((’x1’ ’y1’)(’x2’ ’y2’)(’x3’ ’y3’)

(’x4’ ’y4’)(’x5’ ’y5’)(’x6’ ’y6’))) .

Then, we obtain:

search in TEST : P4 =>! new*[nl:QidSet]P:Trm

such that wait-aux(nl:QidSet, P:Trm) = true .

Solution 1 (state 6)

nl:QidSet --> (’x2’ ’y2’) (’x3’ ’y3’) (’x4’ ’y4’)(’x5’ ’y5’)

(’x6’ ’y6’) ’y1’ ’x1’ P:Trm -->

’x5’{0} < True > . ’x6’{0} < False > . nil |
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lin ’y6’{0}(’a’) . lin ’y5’{0}( ’b’) . nil |

un ’x1’{0}(’w’) . ’w’{0} < ’x4’{0} > . ’w’{0} < ’y4’{0} > . nil

No more solutions.

reduce in TEST : modelCheck(P4, build-lock-formula((’x1’ ’y1’)

(’x2’ ’y2’) (’x3’ ’y3’) (’x4’ ’y4’) (’x5’ ’y5’) ’x6’ ’y6’)) .

result ModelCheckResult: counterexample(

{new*[(’x1’ ’y1’) (’x2’ ’y2’) (’x3’ ’y3’) (’x4’ ’y4’)

(’x5’ ’y5’) ’x6’ ’y6’]

’x2’{0} < True > . un ’x1’{0}(’w’) . ’w’{0} < ’x4’{0} > .

’w’{0} < ’y4’{0} > . nil |

’y1’{0} < ’x3’{0} > . lin ’y3’{0}(’z’) . lin ’y3’{0}(’t’) .

’z’{0} < ’a’{0} > . lin ’t’{0}(’c’) . ’x5’{0} < True > .

’x6’{0} < False > . nil | lin ’y2’{0}(’b’) . lin ’y4’{0}(’z’) .

’x4’{0} < ’a’{0} > . nil | lin ’y6’{0}(’a’) . lin ’y5’{0}(’b’) .

nil,’LINCOM}

{new*[(’x2’ ’y2’) (’x3’ ’y3’) (’x4’ ’y4’) (’x5’ ’y5’)

(’x6’ ’y6’) ’y1’ ’x1’]

’y1’{0} < ’x3’{0} > . lin ’y3’{0}(’z’) . lin ’y3’{0}(’t’) .

’z’{0} < ’a’{0} > . lin ’t’{0}(’c’) . ’x5’{0} < True > .

’x6’{0} < False > . nil | lin ’y4’{0}(’z’) . ’x4’{0} < ’a’{0} > .

nil | lin ’y6’{0}(’a’) . lin ’y5’{0}(’b’) . nil | un ’x1’{0}(’w’) .

’w’{0} < ’x4’{0} > . ’w’{0} < ’y4’{0} > . nil,’UNCOM}

{new*[(’x2’ ’y2’) (’x3’ ’y3’) (’x4’ ’y4’) (’x5’ ’y5’)

(’x6’ ’y6’) ’y1’ ’x1’]

’x3’{0} < ’x4’{0} > . ’x3’{0} < ’y4’{0} > . nil | lin ’y3’{0}(’z’) .

lin ’y3’{0}(’t’) . ’z’{0} < ’a’{0} > . lin ’t’{0}(’c’) .

’x5’{0} < True > . ’x6’{0} < False > . nil | lin ’y4’{0}(’z’) .

’x4’{0} < ’a’{0} > . nil | lin ’y6’{0}(’a’) . lin ’y5’{0}(’b’) .

nil | un ’x1’{0}(’w’) . ’w’{0} < ’x4’{0} > . ’w’{0} < ’y4’{0} > .

nil,’LINCOM}

{nw*[(’x2’ ’y2’) (’x3’ ’y3’) (’x4’ ’y4’) (’x5’ ’y5’)

(’x6’ ’y6’) ’y1’ ’x1’]

x3’{0} < ’y4’{0} > . nil | lin ’y3’{0}(’t’) . ’x4’{0} < ’a’{0} > .

lin ’t’{0}(’c’) . ’x5’{0} < True > . ’x6’{0} < False > . nil |

lin ’y4’{0}(’z’) . ’x4’{0} < ’a’{0} > . nil | lin ’y6’{0}(’a’) .

lin ’y5’{0}(’b’) . nil | un ’x1’{0}(’w’) . ’w’{0} < ’x4’{0} > .

’w’{0} < ’y4’{0} > . nil,’LINCOM}

{new*[(’x2’ ’y2’) (’x3’ ’y3’) (’x4’ ’y4’) (’x5’ ’y5’)

(’x6’ ’y6’) ’y1’ ’x1’]

’x4’{0} < ’a’{0} > . lin ’y4’{0}(’c’) . ’x5’{0} < True > .

’x6’{0} < False > . nil | lin ’y4’{0}(’z’) . ’x4’{0} < ’a’{0} > .

un ’x1’{0}(’w’) . ’w’{0} < ’x4’{0} > . ’w’{0} < ’y4’{0} > .

nil, ’LINCOM}

{new*[(’x2’ ’y2’) (’x3’ ’y3’) (’x4’ ’y4’) (’x5’ ’y5’)

(’x6’ ’y6’) ’y1’ ’x1’]

’x4’{0} < ’a’{0} > . nil | lin ’y4’{0}(’c’) . ’x5’{0} < True > .



32 C. A. Ramı́rez Restrepo and J. A. Pérez

’x6’{0} < False > . nil | lin ’y6’{0}(’a’) . lin ’y5’{0}(’b’) .

nil | un ’x1’{0}(’w’) . ’w’{0} < ’x4’{0} > . ’w’{0} < ’y4’{0} > .

nil,’LINCOM},

{new*[(’x2’ ’y2’) (’x3’ ’y3’) (’x4’ ’y4’) (’x5’ ’y5’)

(’x6’ ’y6’) ’y1’ ’x1’]

’x5’{0} < True > . ’x6’{0} < False > . nil |

lin ’y6’{0}(’a’) . lin ’y5’{0}(’b’) . nil |

un ’x1’{0}(’w’) . ’w’{0} < ’x4’{0} > . ’w’{0} < ’y4’{0} > .

nil,deadlock})

Process P4 performs some reductions on variables x1, y1, x2, y2, x3, y3, x4, y4
before reaching a deadlock involving variables x5, y5, x6, y6.

Finally, Consider a similar execution for the process P5:

search P5 =>! new* [nl:QidSet] P:Trm

such that wait-aux(nl:QidSet, P:Trm) .

red modelCheck(P5, build-lock-formula((’x1’ ’y1’)(’x2’ ’y2’)(’x3’ ’y3’)

(’x4’ ’y4’)(’x5’ ’y5’))) .

We obtain the following results:

search in TEST : P5 =>! new*[nl:QidSet]P:Trm

such that wait-aux(nl:QidSet,P:Trm) = true .

Solution 1 (state 6)

nl:QidSet --> (’x1’ ’y1’) (’x2’ ’y2’) (’x3’ ’y3’) (’x4’ ’y4’) ’x5’ ’y5’

P:Trm --> ’x4’{0} < False > . lin ’y4’{0}(’c’) . nil |

lin ’y1’{0}(’w’) . (’w’{0} << ’b’ . lin ’y3’{0}(’c’) .

lin ’x5’{0}(’t’) . ’t’{0} < True > . nil) |

un ’y1’{0}(’z’) . (’z’{0} << ’a’ . lin ’y3’{0}(’c’) . nil)

No more solutions.

reduce in TEST : modelCheck(P5, build-lock-formula((’x1’ ’y1’)

(’x2’ ’y2’) (’x3’ ’y3’) (’x4’ ’y4’) ’x5’ ’y5’)) .

result ModelCheckResult: counterexample(

{new*[(’x1’ ’y1’) (’x2’ ’y2’) (’x3’ ’y3’) (’x4’ ’y4’) ’x5’ ’y5’]

’x1’{0} < ’x2’{0} > . (’y2’{0} >>{(’a’ : ’x3’{0} < True > .

’x4’{0} < False > . lin ’y4’{0}(’c’) . nil)

’b’ : ’x3’{0} < False > . ’y5’{0} < ’x4’{0} > .

lin ’y4’{0}(’c’) . nil}) |

lin ’y1’{0}(’w’) . (’w’{0} << ’b’ . lin ’y3’{0}(’c’) .

lin ’x5’{0}(’t’) . ’t’{0} < True > . nil) |

un ’y1’{0}(’z’) . (’z’{0} << ’a’ . lin ’y3’{0}(’c’) . nil),’UNCOM}

{new*[(’x1’ ’y1’) (’x2’ ’y2’) (’x3’ ’y3’) (’x4’ ’y4’) ’x5’ ’y5’]

(’y2’{0} >>{(’a’ : ’x3’{0} < True > . ’x4’{0} < False > .

lin ’y4’{0}(’c’) . nil) ’b’ : ’x3’{0} < False > .

’y5’{0} < ’x4’{0} > . lin ’y4’{0}(’c’) . nil}) |

lin ’y1’{0}(’w’) . (’w’{0} << ’b’ . lin ’y3’{0}(’c’) .

lin ’x5’{0}(’t’) . ’t’{0} < True > . nil) |

un ’y1’{0}(’z’) . (’z’{0} << ’a’ . lin ’y3’{0}(’c’) . nil) |
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(’x2’{0} << ’a’ . lin ’y3’{0}(’c’) . nil),’CASE}

{new*[(’x1’ ’y1’) (’x2’ ’y2’) (’x3’ ’y3’) (’x4’ ’y4’) ’x5’ ’y5’]

’x3’{0} < True > . ’x4’{0} < False > . lin ’y4’{0}(’c’) . nil |

lin ’y1’{0}(’w’) . (’w’{0} << ’b’ . lin ’y3’{0}(’c’) .

lin ’x5’{0}(’t’) . ’t’{0} < True > . nil) |

lin ’y3’{0}(’c’) . nil |

un ’y1’{0}(’z’).(’z’{0} << ’a’ . lin ’y3’{0}(’c’) . nil), ’LINCOM},

{new*[(’x1’ ’y1’) (’x2’ ’y2’) (’x3’ ’y3’) (’x4’ ’y4’) ’x5’ ’y5’]

’x4’{0} < False > . lin ’y4’{0}(’c’) . nil |

lin ’y1’{0}(’w’) . (’w’{0} << ’b’ . lin ’y3’{0}(’c’) .

lin ’x5’{0}(’t’) . ’t’{0} < True > . nil) |

un ’y1’{0}(’z’).(’z’{0} << ’a’ . lin ’y3’{0}(’c’) . nil),deadlock})

These results are consistent being as process P5 is not deadlock free and not
lock free.
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