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Abstract

Protocols provide the unifying glue in concurrent and distributed software today; verifying that
message-passing programs conform to such governing protocols is important but difficult. Static
approaches based on multiparty session types (MPST) use protocols as types to avoid protocol
violations and deadlocks in programs. An elusive problem for MPST is to ensure both protocol
conformance and deadlock-freedom for implementations with interleaved and delegated protocols.

We propose a decentralized analysis of multiparty protocols, specified as global types and imple-
mented as interacting processes in an asynchronous π-calculus. Our solution rests upon two novel
notions: router processes and relative types. While router processes use the global type to enable
the composition of participant implementations in arbitrary process networks, relative types extract
from the global type the intended interactions and dependencies between pairs of participants. In
our analysis, processes are typed using APCP, a type system that ensures protocol conformance
and deadlock-freedom with respect to binary protocols, developed in prior work. Our decentral-
ized, router-based analysis enables the sound and complete transference of protocol conformance
and deadlock-freedom from APCP to multiparty protocols.

Contents
1 Introduction 3

2 APCP: Asynchronous Processes, Deadlock-free by Typing 6

3 Global Types and Relative Projection 14
3.1 Relative Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Relative Projection and Well-Formedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Analyzing Global Types using Routers 18
4.1 Synthesis of Routers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Types for the Router’s Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 The Channels between Routers and Implementations . . . . . . . . . . . . . . . . . . . . 21
4.2.2 The Channels between Pairs of Routers . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Networks of Routed Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.1 The Typability of Routers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.2 Transference of Results (Operational Correspondence) . . . . . . . . . . . . . . . . . . . 37

4.4 Routers Strictly Generalize Centralized Orchestrators . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.1 Synthesis of Orchestrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.2 Orchestrators and Centralized Compositions of Routers are Behaviorally Equivalent . . 48

5 Routers in Action 55
5.1 Delegation and Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Another Example of Delegation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 The Authorization Protocol in Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Related Work 59

7 Conclusion 60

1



References 61

A Comparing Merge-based Well-formedness and Relative Well-formedness 66
A.1 Relative Well-Formed, Not Merge Well-Formed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.2 Merge Well-Formed, Not Relative Well-Formed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2



1 Introduction
This paper presents a new approach to the analysis of the protocols that pervade concurrent and dis-
tributed software. Such protocols provide an essential unifying glue between communicating programs;
ensuring that communicating programs implement protocols correctly, avoiding protocol violations and
deadlocks, is an important but difficult problem. Here, we study multiparty session types (MPST) [38],
an approach to correctness in message-passing programs that uses governing multiparty protocols as
types in program verification.

As a motivating example, let us consider a recursive authorization protocol, adapted from an example
by Scalas and Yoshida [51]. It involves three participants: a Client, a Server, and an Authorization
service. Intuitively, the protocol proceeds as follows. The Server requests the Client either to login or to
quit the protocol. In the case of login, the Client sends a password to the Authorization service, which
then may authorize the login with the Server; subsequently, the protocol can be performed again: this is
useful when, e.g., clients must renew their authorization privileges after some time. In the case of quit,
the protocol ends.

MPST use global types to specify multiparty protocols. The authorization protocol just described can
be specified by the following global type between Client (c), Server (s), and Authorization service (a):

Gauth = µX . s� c

{
login . c� a

{
passwd〈str〉 . a� s{auth〈bool〉 . X}

}
,

quit . c� a{quit . •}

}
(1)

After declaring a recursion on the variable X (µX), the global type Gauth stipulates that s sends to c
(s� c) a label login or quit. The rest of the protocol depends on this choice by s. In the login-branch,
c sends to a a label passwd along with a string value (〈str〉) and a sends to s a label auth and a boolean
value, after which the protocol loops to the beginning of the recursion (X). In the quit-branch, c sends
to a a label quit after which the protocol ends (•).

In MPST, participants are implemented as distributed processes that communicate asynchronously.
Each process must correctly implement its corresponding portion of the protocol; these individual guar-
antees ensure that the interactions between processes conform to the given global type. Correctness
follows from protocol fidelity (processes interact as stipulated by the protocol), communication safety
(no errors or mismatches in messages), and deadlock-freedom (processes never get stuck waiting for
each other). Ensuring that implementations satisfy these properties is a challenging problem, which is
further compounded by two common and convenient features in interacting processes: delegation and
interleaving. We motivate them in the context of our example:

• Delegation, or higher-order channel passing, can effectively express that the Client transparently
reconfigures its involvement by asking another participant (say, a Password Manager) to act on its
behalf;

• Interleaving arises when a single process implements more than one role, as in, e.g., an implemen-
tation of both the Server and the Authorization service in a sequential process.

Note that while delegation is explicitly specified in a global type, interleaving arises in its implementation
as interacting processes, not in its specification.

MPST have been widely studied from foundational and applied angles [7, 19, 39, 50, 5, 6, 51, 20, 41,
44]. The original theory by Honda et al. [37] defines a behavioral type system [40, 3] for a π-calculus,
which exploits linearity to ensure protocol fidelity and communication safety; most derived works retain
this approach and target the same properties. Deadlock-freedom is hard to ensure by typing when
implementations feature delegation and interleaving. In simple scenarios without interleaving and/or
delegation, deadlock-freedom is easy, as it concerns a single-threaded protocol. In contrast, deadlock-
freedom for processes running multiple, interleaved protocols (possibly delegated) is a much harder
problem, addressed only by some advanced type systems [7, 46, 22].

In this paper, we tackle the problem of ensuring that networks of interacting processes correctly im-
plement a given global type in a deadlock-free manner, while supporting delegation and interleaving. Our
approach is informed by the differences between orchestration and choreography, two salient approaches
to the coordination and organization of interacting processes in service-oriented paradigms [47]:
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Figure 1: Given processes P , Q, and R implementing the roles of c, s, and a, respectively, protocol Gauth

can be realized as a choreography of routed implementations (our approach, left) and as an orchestration
of implementations, with a medium or arbiter process (previous works, right).

• In orchestration-based approaches, processes interact through a coordinator process which ensures
that they all follow the protocol as intended. Quoting Van der Aalst, in an orchestration “the
conductor tells everybody in the orchestra what to do and makes sure they all play in sync” [55].

• In choreography-based approaches, processes interact directly following the protocol without ex-
ternal coordination. Again quoting Van der Aalst, in a choreography “dancers dance following a
global scenario without a single point of control” [55].

Specification and analysis techniques based on MPST fall under the choreography-based approach.
The global type provides the protocol’s specification; based on the global type, implementations for each
participant interact directly with each other, without an external coordinator.

As we will see, the contrast between orchestration and choreography is relevant here because it induces
a different network topology for interacting processes. In an orchestration, the resulting process network
is centralized : all processes must connect to a central orchestrator process. In a choreography, the process
network is decentralized, as processes can directly connect to each other.

Contributions We develop a new decentralized analysis of multiparty protocols.

• Here ‘analysis’ refers to (i) ways of specifying such protocols as interacting processes and (ii) tech-
niques to verify that those processes satisfy the intended correctness properties.

• Also, aligned with the above discussion, ‘decentralized’ refers to the intended network topology for
processes, which does not rely on an external coordinator.

Our decentralized analysis of global types enforces protocol fidelity, communication safety, and deadlock-
freedom for process implementations, while uniformly supporting delegation, interleaving, and asyn-
chronous communication.

The key idea of our analysis is to exploit global types to generate router processes (simply routers)
that enable participant implementations to communicate directly. There is a router per participant; it
is intended to serve as a “wrapper” for an individual participant’s implementation. The composition
of an implementation with its corresponding router is called a routed implementation. Collections of
routed implementations can then be connected in arbitrary process networks that correctly realize the
multiparty protocol, subsuming centralized and decentralized topologies.

Routers are synthesized from global types, and do not change the behavior of the participant imple-
mentations they wrap; they merely ensure that networks of routed implementations correctly behave as
described by the given multiparty protocol. Returning to Van der Aalst’s analogies quoted above, we
may say that in our setting participant implementations are analogous to skilled but barefoot dancers,
and that routers provide them with the appropriate shoes to dance without a central point of control.
To make this analogy a bit more concrete, Figure 1 (left) illustrates the decentralized process network
formed by routed implementations of the participants of Gauth: once wrapped by an appropriate router,
implementations P , Q, and R can be composed directly in a decentralized process network.
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A central technical challenge in our approach is to ensure that compositions of routed implemen-
tations conform to their global type. The channels that enable the arbitrary composition of routed
implementations need to be typed in accordance with the given multiparty protocol. Unfortunately, the
usual notion of projection in MPST, which obtains a single participant’s perspective from a global type,
does not suffice: we need a local perspective that is relative to the two participants that the connected
routed implementations represent. To this end, we introduce a new notion, relative projection, which
isolates the exchanges of the global type that relate to pairs of participants. In the case of Gauth, for
instance, we need three relative types, describing the protocol for a and c, for a and s, and for c and s.

A derived challenge is that when projecting a global type onto a pair of participants, it is possible to
encounter non-local choices: choices by other participants that affect the protocol between the two partic-
ipants involved in the projection. To handle this, relative projection explicitly records non-local choices
in the form of dependencies, which inform the projection’s participants that they need to coordinate on
the results of the non-local choices.

To summarize, our decentralized analysis of global types relies on three intertwined novel notions:

• Routers that wrap participant implementations in order to enable their composition in arbitrary
network topologies, whilst guaranteeing that the resulting process networks correctly follow the
given global type in a deadlock-free manner.

• Relative Types that type the channels between routed implementations, obtained by means of a
new notion of projection of global types onto pairs of participants.

• Relative Projection and Dependencies that make it explicit in relative types that participants
need to coordinate on non-local choices.

The key ingredients of our decentralized analysis for Gauth are jointly depicted in Figure 2.
With respect to prior analyses of multiparty protocols, a distinguishing feature of our work is its

natural support of decentralized process networks, as expected in a choreography-based approach. Caires
and Pérez [12] connect participant implementations through a central coordinator, calledmedium process.
This medium process is generated from a global type, and intervenes in all exchanges to ensure that the
participant implementations follow the multiparty protocol. The composition of the medium with the
participant implementations can then be analyzed using a type system for binary sessions. In a similar
vein, Carbone et al. [17] define a type system in which they use global types to validate choreographies
of participant implementations. Their analysis of protocol implementations—in particular, deadlock-
freedom—relies on encodings into another type system where participant implementations connect to a
central coordinator, called the arbiter process. Similar to mediums, arbiters are generated from the global
type to ensure that participant implementations follow the protocol as intended. Both these approaches
are clear examples of orchestration, and thus do not support decentralized network topologies.

To highlight the differences between our decentralized analysis and prior approaches, compare the
choreography of routed implementations in Figure 1 (left) with an implementation of Gauth in the style of
Caires and Pérez and of Carbone et al., given in Figure 1 (right). These prior works rely on orchestration
because the type systems they use for verifying process implementations restrict connections between
processes: they only admit a form of process composition that makes it impossible to simultaneously
connect three or more participant implementations [26, 25]. In this paper, we overcome this obstacle
by relying on APCP (Asynchronous Priority-based Classical Processes) [54], a type system that allows
for more general forms of process composition. By using annotations on types, APCP prevents circular
dependencies, i.e., cyclically connected processes that are stuck waiting for each other. This is how our
approach supports networks of routed participants in both centralized and decentralized topologies, thus
subsuming choreography and orchestration approaches.

Outline This paper is structured as follows. Next, Section 2 recalls APCP as introduced by Van den
Heuvel and Pérez [54] and summarizes the correctness properties for asynchronous processes derived
from typing. The following three sections develop and illustrate our contributions:

• Section 3 introduces relative types and relative projection, and defines well-formed global types, a
class of global types that includes protocols with non-local choices.
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Figure 2: Decentralized analysis of Gauth into a network of routed implementations. The definition of
Gauth contains message types. Focusing on the client c (on the left), Lc denotes a session type, whereas
Rcs and Rca are relative types with respect to the server and the authorization service, respectively.

• Section 4 introduces the synthesis of routers. A main result is their typability in APCP (Theo-
rem 11). We establish deadlock-freedom for networks of routed implementations (Theorem 18),
which we transfer to multiparty protocols via an operational correspondence result (Theorems 19
and 23). Moreover, we show that our approach strictly generalizes prior analyses based on central-
ized topologies (Theorem 27).

• Section 5 demonstrates our contributions with a full development of the routed implementations
for Gauth, and an example of the flexible support for delegation and interleaving enabled by our
router-based approach and APCP.

We discuss further related works in § 6 and conclude the paper in § 7. We use colors to improve readability.

2 APCP: Asynchronous Processes, Deadlock-free by Typing
We recall APCP as defined by Van den Heuvel and Pérez [54]. APCP is a type system for asynchronous π-
calculus processes (with non-blocking outputs) [36, 9], with support for recursion and cyclic connections.
In this type system, channel endpoints are assigned linear types that represent two-party (binary) session
types [35]. Well-typed APCP processes preserve typing (Theorem 2) and are deadlock-free (Theorem 5).

At its basis, APCP combines Dardha and Gay’s Priority-based Classical Processes (PCP) [23] with
DeYoung et al.’s continuation-passing semantics for asynchrony [29], and adds recursion, inspired by the
work of Toninho et al. [52]. We refer the interested reader to the work by Van den Heuvel and Pérez [54]
for a motivation of design choices and proofs of results.

Process Syntax We write x, y, z, . . . to denote (channel) endpoints (also known as names), and write
x̃, ỹ, z̃, . . . to denote sequences of endpoints. With a slight abuse of notation, we sometimes write xi ∈ x̃
to refer to a specific element in the sequence x̃. Also, we write i, j, k, . . . to denote labels for choices
and I, J,K, . . . to denote sets of labels. We write X,Y, . . . to denote recursion variables, and P,Q, . . . to
denote processes.

Figure 3 (top) gives the syntax of processes. The output action x[y, z] sends a message y (an endpoint)
and a continuation endpoint z along x. The input prefix x(y, z) . P blocks until a message and a
continuation endpoint are received on x (referred to in P as the placeholders y and z, respectively),
binding y and z in P . The selection action x[z] / i sends a label i and a continuation endpoint z along x.
The branching prefix x(z) . {i : Pi}i∈I blocks until it receives a label i ∈ I and a continuation endpoint
(reffered to in Pi as the placeholder z) on x, binding z in each Pi. Restriction (νxy)P binds x and y
in P , thus declaring them as the two endpoints of the same channel and enabling communication, as
in Vasconcelos [56]. The process P | Q denotes the parallel composition of P and Q. The process 0
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Process syntax:

P,Q ::= x[y, z] output | x(y, z) . P input
| x[z] / i selection | x(z) . {i : Pi}i∈I branching | (νxy)P restriction
| (P |Q) parallel | 0 inaction | x↔ y forwarder
| µX(z̃) . P recursive loop | X〈z̃〉 recursive call

................................................................................................................................................
Structural congruence:

P ≡α P ′ =⇒ P ≡ P ′ x↔ y ≡ y↔ x

P |Q ≡ Q | P (νxy)x↔ y ≡ 0

P | 0 ≡ P P | (Q |R) ≡ (P |Q) |R
x, y /∈ fn(P ) =⇒ P | (νxy)Q ≡ (νxy)(P |Q) (νxy)0 ≡ 0

|z̃| = |ỹ| =⇒ µX(z̃) . P ≡ P
{

(µX(ỹ) . P{ỹ/z̃})/X〈ỹ〉
}

(νxy)P ≡ (νyx)P

(νxy)(νzw)P ≡ (νzw)(νxy)P
................................................................................................................................................
Reduction:

�Id z, y 6= x =⇒ (νyz)(x↔ y | P ) −→ P{x/z}
�⊗ & (νxy)(x[a, b] | y(v, z) . P ) −→ P{a/v, b/z}
�⊕& j ∈ I =⇒ (νxy)(x[b] / j | y(z) . {i : Pi}i∈I) −→ Pj{b/z}

P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q
P −→ Q

�≡
P −→ Q

(νxy)P −→ (νxy)Q
�ν

P −→ Q

P |R −→ Q |R
�|

Figure 3: Definition of APCP’s process language.

denotes inaction. The forwarder process x↔ y is a primitive copycat process that links together x and
y. The prefix µX(z̃) . P defines a recursive loop, binding occurrences of X in P ; the endpoints z̃ form
a context for P . The recursive call X〈z̃〉 loops to its corresponding µX, providing the endpoints z̃ as
context. We only consider contractive recursion, disallowing processes with subexpressions of the form
µX1(z̃) . . . µXn(z̃) . X1〈z̃〉.

Endpoints and recursion variables are free unless otherwise stated (i.e., unless they are bound some-
how). We write fn(P ) and frv(P ) for the sets of free names and free recursion variables of P , respectively.
Also, we write P{x/y} to denote the capture-avoiding substitution of the free occurrences of y in P for
x. The notation P{µX(ỹ) .P ′/X〈ỹ〉} denotes the substitution of occurrences of recursive calls X〈ỹ〉 in P
with the recursive loop µX(ỹ) .P ′, which we call unfolding recursion. We write sequences of substitutions
P{x1/y1} . . . {xn/yn} as P{x1/y1, . . . , xn/yn}.

In an output x[y, z], both y and z are free; they can be bound to a continuation process using parallel
composition and restriction, as in (νya)(νzb)(x[y, z] | Pa,b). The same applies to selection x[z] / i. We
introduce useful notations that elide the restrictions and continuation endpoints:

Notation 1 (Derivable Actions and Prefixes). We use the following syntactic sugar:

x[y] · P := (νya)(νzb)(x[a, b] | P{z/x}) x / ` · P := (νzb)(x[b] / ` | P{z/x})
x(y) . P := x(y, z) . P{z/x} x . {i : Pi}i∈I := x(z) . {i : Pi{z/x}}i∈I

Note the use of ‘ · ’ instead of ‘ . ’ in output and selection to stress that they are non-blocking.

Operational Semantics We define a reduction relation for processes (P −→ Q) that formalizes how
complementary actions on connected endpoints may synchronize. As usual for π-calculi, reduction relies
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Session Type Endpoint Behavior

A⊗o B output an endpoint of type A, then behave as B
A

&o B input an endpoint of type A, then behave as B
⊕o{i : Ai}i∈I select a label i ∈ I, then behave as Ai
&o{i : Ai}i∈I receive a choice for a label i ∈ I, then behave as Ai
• closed session; no behavior

Table 1: Session types and their associated endpoint behaviors (cf. Definition 1).

on structural congruence (P ≡ Q), which relates processes with minor syntactic differences; it is the
smallest congruence on the syntax of processes (Fig. 3 (top)) satisfying the axioms in Figure 3 (middle).

Structural congruence defines the following properties of our process language. Processes are equiv-
alent up to α-equivalence. Parallel composition is associative and commutative, with unit 0. The
forwarder process is symmetric, and equivalent to inaction if both endpoints are bound together through
restriction. A parallel process may be moved into or out of a restriction as long as the bound chan-
nels do not occur free in the moved process: this is scope inclusion and scope extrusion, respectively.
Restrictions on inactive processes may be dropped, and the order of endpoints in restrictions and of
consecutive restrictions does not matter. Finally, a recursive loop is equivalent to its unfolding, replacing
any recursive calls with copies of the recursive loop, where the call’s endpoints are pairwise substituted
for the contextual endpoints of the loop.

As we will see next, the semantics of APCP is closed under structural congruence. This means that
processes are equi-recursive; however, APCP’s typing discipline (described next) treats recursive types
as iso-recursive (see, e.g., Pierce [48]).

We can now define our reduction relation. We define the reduction relation P −→ Q by the axioms
and closure rules in Figure 3 (bottom). Presentations of Curry-Howard interpretations of linear logic
often include commuting conversions (such as [14, 57, 23, 29]), which allow pulling prefixes on free
channels out of restrictions; they are not necessary for deadlock-freedom in APCP, so we do not include
them.

Rule �Id implements the forwarder as a substitution. Rule �⊗ &synchronizes an output and an input
on connected endpoints and substitutes the message and continuation endpoint. Rule �⊕& synchronizes
a selection and a branch: the received label determines the continuation process, substituting the con-
tinuation endpoint appropriately. Rules �≡, �ν , and �| close reduction under structural congruence,
restriction, and parallel composition, respectively.

Notation 2 (Reductions). We write −→∗ for the reflexive, transitive closure of −→. Also, we write
P −→? Q if P −→∗ Q in a finite number of steps, and P 6−→∗Q for the non-existence of a series of
reductions from P to Q.

Session Types APCP types processes by assigning binary session types to channel endpoints. Follow-
ing Curry-Howard interpretations, we present session types as linear logic propositions (cf., e.g., Caires
et al. [15], Wadler [57], Caires and Pérez [13], and Dardha and Gay [23]). We extend these propositions
with recursion and priority annotations on connectives. Intuitively, actions typed with lower priority
should be performed before those with higher priority.

We write o, κ, π, ρ, . . . to denote priorities, and ω to denote the ultimate priority that is greater than
all other priorities and cannot be increased further. That is, ∀t ∈ N. ω > t and ∀t ∈ N. ω + t = ω.

Definition 1 (Session Types). The following grammar defines the syntax of session types A,B. Let
o ∈ N ∪ {ω}.

A,B ::= A⊗o B | A &o B | ⊕o{i : A}i∈I | &o{i : A}i∈I | • | µX . A | X
Table 1 gives session types and the behavior that is expected of an endpoint with each type (recursive
types entail a communication behavior only after unfolding). Note that • does not require a priority, as
closed endpoints do not exhibit behavior and thus are non-blocking. We define • as a single, self-dual
type for closed endpoints (cf. Caires [11] and Atkey et al. [4]).
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Type µX . A denotes a recursive type, in which A may contain occurrences of the recursion variable
X. As customary, µ is a binder: it induces the standard notions of α-equivalence, substitution (denoted
A{B/X}), and free recursion variables (denoted frv(A)). We work with tail-recursive, contractive types,
disallowing types of the form µX1 . . . µXn.X1 and µX.X⊗oA. Recursive types are treated iso-recursively:
there will be an explicit typing rule that unfold recursive types, and recursive types are not equal to their
unfolding. We postpone formalizing the unfolding of recursive types, as it requires additional definitions
to ensure consistency of priorities upon unfolding.

Duality, the cornerstone of session types and linear logic, ensures that the two endpoints of a channel
have matching actions. Furthermore, dual types must have matching priority annotations. The following
inductive definition of duality suffices for our tail-recursive types (cf. Gay et al. [33]).

Definition 2 (Duality). The dual of session type A, denoted A, is defined inductively as follows:

A⊗o B := A

&o B ⊕o{i : Ai}i∈I := &o{i : Ai}i∈I • := • µX . A := µX . A

A

&o B := A⊗o B &o{i : Ai}i∈I := ⊕o{i : Ai}i∈I X := X

The priority of a type is determined by the priority of the type’s outermost connective:

Definition 3 (Priorities). For session type A, pr(A) denotes its priority:

pr(A⊗o B) := pr(A

&o B) := o pr(µX . A) := pr(A)

pr(⊕o{i : Ai}i∈I) := pr(&o{i : Ai}i∈I) := o pr(•) := pr(X) := ω

The priority of • and X is ω: they denote “final”, non-blocking actions of protocols. Although ⊗ and ⊕
also denote non-blocking actions, their priority is not constant: duality ensures that the priority for ⊗
(resp. ⊕) matches the priority of a corresponding

&

(resp. &), which denotes a blocking action.
We now turn to formalizing the unfolding of recursive types. Recall the intuition that actions typed

with lower priority should be performed before those with higher priority. Based on this rationale, we
observe that the unfolding of the recursive type µX . A should not result in A{µX . A/X}, as usual,
but that the priorities of the unfolded type should be increased. This is because the actions related to
the unfolded recursion should be performed after the prefix. For example, consider the recursive type
µX.A

&0X. If we unfold this type without increasing the priority, we would obtain A
&0 (µX.A

&0X), a
type in which the priorities no longer determine a global ordering between the two inputs. By increasing
the priority in the unfolded type as in, e.g., A

&0 (µX . A

&1 X), a global ordering is preserved.
We make this intuition precise by defining the lift of priorities in types:

Definition 4 (Lift). For proposition A and t ∈ N, we define ↑tA as the lift operation:

↑t(A⊗o B) := (↑tA)⊗o+t (↑tB) ↑t(⊕o{i : Ai}i∈I) := ⊕o+t{i : ↑tAi}i∈I ↑t• := •
↑t(A

&o B) := (↑tA)

&o+t (↑tB) ↑t(&o{i : Ai}i∈I) := &o+t{i : ↑tAi}i∈I
↑t(µX . A) := µX . (↑tA) ↑tX := X

Henceforth, the unfolding of µX . A is A{µX . (↑tA)/X}, denoted unfoldt(µX . A), where t ∈ N depends
on the highest priority of the types occurring in a typing context. We recall that we do not consider
types to be equi-recursive: recursive types are not equal to their unfolding. Recursive types can only be
unfolded by typing rules, discussed next.

We now define the highest priority of a type:

Definition 5 (Highest Priority). For session type A, maxpr(A) denotes its highest priority:

max
pr

(A⊗o B) := max
pr

(A

&o B) := max(max
pr

(A),max
pr

(B), o)

max
pr

(⊕o{i : Ai}i∈I) := max
pr

(&o{i : Ai}i∈I) := max(max
i∈I

(max
pr

(Ai)), o)

max
pr

(µX . A) := max
pr

(A)

max
pr

(•) := max
pr

(X) := 0

Notice how the highest priority of • and X is 0, in contrast to their priority (as given by Definition 3):
they do not contribute to the increase in priority needed for unfolding recursive types.
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Typing Rules The typing rules of APCP ensure that actions with lower priority are performed before
those with higher priority (cf. Dardha and Gay [23]). To this end, they enforce the following laws:

1. an action with priority o must be prefixed only by inputs and branches with priority strictly smaller
than o—this law does not hold for output and selection, as they are not prefixes;

2. dual actions leading to a synchronization must have equal priorities (cf. Def. 1).

Judgments are of the form P ` Ω; Γ, where:

• P is a process;

• Γ is a context that assigns types to channels (x : A);

• Ω is a context that assigns tuples of types to recursion variables (X : (A,B, . . .)).

A judgment P ` Ω; Γ then means that P can be typed in accordance with the type assignments for
names recorded in Γ and the recursion variables in Ω. Intuitively, the latter context ensures that the
context endpoints between recursive definitions and calls concur. Both contexts Γ and Ω obey exchange:
assignments may be silently reordered. Γ is linear, disallowing weakening (i.e., all assignments must be
used) and contraction (i.e., assignments may not be duplicated). Ω allows weakening and contraction,
because a recursive definition may be called zero or more times.

The empty context is written ∅. In writing Γ, x : A (or similarly for Ω) we assume that x /∈ dom(Γ).
We write ↑tΓ to denote the component-wise extension of lift (Definition 4) to typing contexts. Also,
we write pr(Γ) to denote the least priority of all types in Γ (Definition 3). An assignment z̃ : Ã means
z1 : A1, . . . , zk : Ak.

Figure 4 (top) gives the typing rules. We describe the typing rules from a bottom-up perspective.
Rule Empty types an inactive process with no endpoints. Rule • silently removes a closed endpoint to the
typing context. Rule Id types forwarding between endpoints of dual type. Rule Mix types the parallel
composition of two processes that do not share assignments on the same endpoints. Rule Cycle types
a restriction, where the two restricted endpoints must be of dual type. Note that a single application of
Mix followed by Cycle coincides with the usual Rule Cut in type systems based on linear logic [14, 57].
Rule ⊗ types an output action; this rule does not have premises to provide a continuation process, leaving
the free endpoints to be bound to a continuation process using Mix and Cycle. Similarly, Rule ⊕ types
an unbounded selection action. Priority checks are confined to Rules

&

and &, which type an input
and a branching prefix, respectively. In both cases, the used endpoint’s priority must be lower than the
priorities of the other types in the continuation’s typing context.

Rule Rec types a recursive definition by introducing a recursion variable to the recursion context
whose tuple of types concurs with the contents of the recursive types in the typing context, where
contractivity is guaranteed by requiring that the eliminated recursion variable may not occur unguarded
in each of the context’s types. At the same time, the recursive types in the context are unfolded, and
their priorities are lifted by a common value, denoted t in the rule, that must be greater than the highest
priority occurring in the original types (cf. Definition 5). Using a “common lifter”, i.e., lifting the priorities
of all types by the same amount is crucial: it maintains the relation between the priorities of the types
in the context.

Rule Var types a recursive call on a variable in the recursive context. The rule requires that all the
types in the context are recursive on the recursion variable called, and that the types inside the recursive
definitions concur with the respective types assigned to the recursion varialbe in the recursive context.
As mentioned before, the types associated to the introduced and consequently eliminated recursion
variable is crucial in ensuring that a recursion is called with endpoints of the same type as required by
its definition.

The binding of output and selection actions to continuation processes (Notation 1) is derivable in
APCP. The corresponding typing rules in Figure 4 (bottom) are admissible using Mix and Cycle. Note
that it is not necessary to include rules for the sugared input and branching in Notation 1, because they
rely on α-renaming only. Figure 4 (bottom) also includes an admissible Rule Lift that lifts a process’
priorities.

The following result assures that, given a type, we can construct a process with an endpoint typable
with the given type:

10



0 ` Ω; ∅
Empty

P ` Ω; Γ

P ` Ω; Γ, x : •
•

x↔ y ` Ω;x : A, y : A
Id

P ` Ω; Γ Q ` Ω; ∆

P |Q ` Ω; Γ,∆
Mix

P ` Ω; Γ, x : A, y : A

(νxy)P ` Ω; Γ
Cycle

x[y, z] ` Ω;x : A⊗o B, y : A, z : B
⊗

P ` Ω; Γ, y : A, z : B o < pr(Γ)

x(y, z) . P ` Ω; Γ, x : A

&o B

&

j ∈ I
x[z] / j ` Ω;x : ⊕o{i : Ai}i∈I , z : Aj

⊕
∀i ∈ I. Pi ` Ω; Γ, z : Ai o < pr(Γ)

x(z) . {i : Pi}i∈I ` Ω; Γ, x : &o{i : Ai}i∈I
&

P ` Ω, X : Ã; z̃ : Ũ t ∈ N > max
pr

(Ã) ∀Ui ∈ Ũ . Ui = unfoldt(µX . Ai)

µX(z̃) . P ` Ω; z̃ : µ̃X . A
Rec

t ∈ N ∀Ui ∈ Ũ . Ui = µX . ↑tAi
X〈z̃〉 ` Ω, X : Ã; z̃ : Ũ

Var

................................................................................................................................................

P ` Ω; Γ, y : A, x : B

x[y] · P ` Ω; Γ, x : A⊗o B
⊗?

P ` Ω; Γ, x : Aj j ∈ I
x / j · P ` Ω; Γ, x : ⊕o{i : Ai}i∈I

⊕?

P ` Ω; Γ t ∈ N
P ` Ω; ↑tΓ

Lift

Figure 4: The typing rules of APCP (top) and admissible rules (bottom).

Proposition 1. Given a type A, there exists a P such that P ` Ω;x : A.

Proof. We inductively define a function charx(A) that, given a type A and an endpoint x, constructs a
process that performs the behavior described by A:

charx(A⊗o B) := x[y] · (chary(A) | charx(B)) charx(⊕o{i : Ai}i∈I) := x / j · charx(Aj) [any j ∈ I]
charx(A

&o B) := x(y) . (chary(A) | charx(B)) charx(&o{i : Ai}i∈I) := x . {i : charx(Ai)}i∈I
charx(•) := 0 charx(µX . A) := µX(x) . charx(A) charx(X) := X〈x〉

For finite types, we have: charx(A) ` ∅;x : A. For simplicity, we omit details about recursive types,
which require unfolding. For closed, recursive types, we have: charx(µX . A) ` ∅;x : µX . A.

Type Preservation Well-typed processes satisfy protocol fidelity, communication safety, and deadlock-
freedom. The first two properties follow directly from type preservation (also known as subject reduction),
which ensures that reduction preserves typing. In contrast to Caires and Pfenning [14] and Wadler [57],
where type preservation corresponds to the elimination of (top-level) applications of rule Cut, in APCP
it corresponds to the more general elimination of (top-level) applications of rule Cycle.

Because reduction is closed under structural congruence, type preservation relies on subject con-
gruence: structural congruence preserves typing. The structural congruence rule that unfolds recursive
definitions requires care, because the types of the unfolded process are also unfolded. Hence, type preser-
vation holds up to unfolding. We formalize this with the relation (P ; Γ)

.

Γ′, which denotes that Γ and
Γ′ are equal up to (un)folding of recursive types consistent with the typing of P under Γ:

11



Definition 6. We define an asymmetrical relation between a process / typing pair (P ; Γ) and a typing
context Γ′, denoted (P ; Γ)

.

Γ′. The relation is defined inductively, with the following being the most
important rules relating unfolded and non-unfolded types:

(P
{

(µX(ỹ) . P{ỹ/z̃})/X〈ỹ〉
}

; z̃ : Ũ)

.

z̃ : Ũ ′ ∀U ′i ∈ Ũ ′. U ′i = unfoldt(µX . A′i)

(P
{

(µX(ỹ) . P{ỹ/z̃})/X〈ỹ〉
}

; z̃ : Ũ)

.

z̃ : µ̃X . A′
Fold

(µX(z̃) . P ; z̃ : µ̃X . A)

.

z̃ : µ̃X . A′ ∀U ′i ∈ Ũ ′. U ′i = unfoldt(µX . A′i)

(µX(z̃) . P ; z̃ : µ̃X . A)

.

z̃ : Ũ ′
Unfold

The other rules follow the typing rules in Figure 4; the following is a selection of rules:

(0; ∅) .∅
Empty

(P ; Γ)

.

Γ′ (Q; ∆)

.

∆′

(P |Q; Γ,∆)

.

Γ′,∆′
Mix

(P ; Γ, y : A, z : B)

.

Γ′, y : A′, z : B′

(x(y, z) . P ; Γ, x : A

&o B)

.

Γ′, x : A′

&o B′

&

We write (P ; Γ) ∼= (Q; Γ′) if (P ; Γ)

.

Γ′ and (Q; Γ′)

.

Γ.

Theorem 2 (Type Preservation). If P ` Ω; Γ and P −→ Q, then there exists Γ′ such that Q ` Ω; Γ′

and (P ; Γ) ∼= (Q; Γ′).

Deadlock-freedom The deadlock-freedom result for APCP adapts that for PCP [23]. As mentioned
before, binding asynchronous outputs and selections to continuations involves additional, low-level uses
of Cycle, which we cannot eliminate through process reduction. Therefore, top-level deadlock-freedom
(referred to as progress) holds for live processes (Theorem 4). A process is live if it is equivalent to a
restriction on active names that perform unguarded actions. This way, e.g., in x[y, z] the name x is
active, but y and z are not. We additionally need a notion of evaluation context, under which reducible
forwarders may occur.

Definition 7 (Active Names). The set of active names of P , denoted an(P ), contains the (free) names
that are used for unguarded actions (output, input, selection, branching):

an(x[y, z]) := {x} an(x(y, z) . P ) := {x} an(0) := ∅
an(x[z] / j) := {x} an(x(z) . {i : Pi}i∈I) := {x} an(x↔ y) := ∅

an(P |Q) := an(P ) ∪ an(Q) an(µX(x̃) . P ) := an(P )

an((νxy)P ) := an(P ) \ {x, y} an(X〈x̃〉) := ∅

Definition 8 (Evaluation Context). Evaluation contexts E are defined by the following grammar:

E ::= [] | E | P | (νxy)E | µX(x̃) . E

We write E [P ] to denote the process obtained by replacing the hole [] in E by P .

Definition 9 (Live Process). A process P is live, denoted live(P ), if

1. there are names x, y and process P ′ such that P ≡ (νxy)P ′ with x, y ∈ an(P ′), or

2. there are names x, y, z and process P ′ such that P ≡ E [(νyz)(x↔ y | P ′)].

We additionally need to account for recursion: as recursive definitions do not entail reductions, we
must fully unfold them before eliminating Cycles:

Lemma 3 (Unfolding). If P ` Ω; Γ, then there is a process P ? such that P ? ≡ P and P ? is not of the
form µX(z̃) . Q.
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Deadlock-freedom, given next, states that typable processes that are live can reduce. It follows from
an analysis of the priorities in the typing of the process, which makes it possible to find a pair of
non-blocked, parallel, dual actions on connected endpoints, such that a communication can occur. The
analysis also considers the possibility that a blocking action is on an endpoint which is not connected
(i.e., the endpoint is free), in which case a commuting conversion can be performed. Confer the full proof
by Van den Heuvel and Pérez [54, Theorem 7] for more details.

Theorem 4 (Progress). If P ` ∅; Γ and live(P ), then there is a process Q such that P −→ Q.

We now state the deadlock-freedom result formalized by Van den Heuvel and Pérez [54]. Following, e.g.,
Caires and Pfenning [14] and Dardha and Gay [23], it concerns processes typable under empty contexts.

Theorem 5 (Deadlock-freedom [54]). If P ` ∅; ∅, then either P ≡ 0 or P −→ Q for some Q.

Fairness Processes typable under empty contexts are not only deadlock-free, they are fair : for each
endpoint in the process, we can eventually observe a reduction involving that endpoint. To formalize
this property, we define labeled reductions, which expose details about a communication:

Definition 10 (Labeled Reductions). Consider the labels

α ::= x↔ y | x〉y : a | x〉y : ` (forwarding, output/input, selection/branching)

where each label has subjects x and y. The labeled reduction P α−⇁Q is defined by the following rules:

(νyz)(x↔ y | P )
x↔y−−−⇁P{x/z} (νxy)(x[a, b] | y(v, z) . P )

x〉y:a−−−⇁P{a/v, b/z}

(νxy)(x[b] / j | y(z) . {i : Pi}i∈I)
x〉y:j−−−⇁Pj{b/z} (if j ∈ I)

P ≡ P ′ P ′
α−⇁Q′ Q′ ≡ Q

P
α−⇁Q

P
α−⇁Q

(νxy)P
α−⇁ (νxy)Q

P
α−⇁Q

P |R α−⇁Q |R

Proposition 6. For any P and P ′, P −→ P ′ if and only if there exists a label α such that P α−⇁P ′.

Proof. Immediate by definition, for each reduction in Figure 3 (bottom) corresponds to a labeled reduc-
tion, and vice versa.

Fairness states that processes typable under empty contexts have at least one finite reduction sequence
(−→?) that enables a labeled reduction involving a pending endpoint—an endpoint that occurs as the
subject of an action, and is not bound by input or branching (see below). Clearly, the typed process
may have other reduction sequences, not necessarily finite. Confer the full proof by Van den Heuvel and
Pérez [54, Theorem 11] for more details.

Definition 11 (Pending Names). Given a process P , we define the set of pending names of P , denoted
pn(P ), as follows:

pn(x[y, z]) := {x} pn(x(y, z).P ) := {x} ∪ (pn(P ) \ {y, z}) pn(0) := ∅
pn(x[z] / j) := {x} pn(x(z) . {i : Pi}i∈I) := {x} ∪ (

⋃
i∈Ipn(Pi) \ {z}) pn(x↔ y) := {x, y}

pn(P |Q) := pn(P ) ∪ pn(Q) pn(µX(x̃) . P ) := pn(P )

pn((νxy)P ) := pn(P ) pn(X〈x̃〉) := ∅

Theorem 7 (Fairness [54]). Suppose given a process P ` ∅; ∅. Then, for every x ∈ pn(P ) there exists a
process P ′ such that P −→? P ′ and P ′ α−⇁ Q, for some process Q and label α with subject x.
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Examples
To illustrate APCP processes and their session types, we give implementations of the three participants
in Gauth in Section 1.

Example 1. Processes P , Q, and R are typed implementations for participants c, s, and a, respectively,
where each process uses a single channel to perform the actions described by Gauth.

P := µX(cµ) . cµ .

{
login : cµ(u) . cµ / passwd · cµ[logmein345] ·X〈cµ〉,
quit : cµ(w) . cµ / quit · cµ[z] · 0

}
` cµ : µX .&2

{
login : •

&3 ⊕4{passwd : • ⊗5 X},
quit : •

&3 ⊕4{quit : • ⊗5 •}

}
Q := µX(sµ) . sµ / login · sµ[u] · sµ . {auth : sµ(v) . X〈sµ〉}
` sµ : µX .⊕0{login : • ⊗1 &10{auth : •

&11 X}, quit : • ⊗1 •}

R := µX(aµ) . aµ .

{
login : aµ . {passwd : aµ(u) . aµ / auth · aµ[v] ·X〈aµ〉},
quit : aµ . {quit : aµ(w) . 0}

}
` aµ : µX .&2

{
login : &6{passwd : •

&7 ⊕8{auth : • ⊗9 X}},
quit : &6{quit : •

&7 •}

}
Process P is a specific implementation for c, where we use ‘ logmein345’ to denote a closed channel
endpoint representing the password string “logmein345”. Similarly, Q is a specific implementation for s
that continuously chooses the login branch.

Note that the processes above cannot be directly connected to each other to implementGauth. Our goal
is to enable the composition of (typed) implementations such as P , Q, and R in a correct and deadlock-
free manner. We shall proceed as follows. After setting up the routers that enable the composition of
these processes according to Gauth (Section 4), we will return to this example in Section 5. At that point,
it will become clear that the priorities in the types of P , Q, and R were chosen to ensure the correct
composition with their respective routers.

3 Global Types and Relative Projection
We analyze multiparty protocols specified as global types. We consider a standard syntax, with session
delegation and recursion, subsuming the one given in the seminal paper by Honda et al. [38]. In the
following, we write p, q, r, s, . . . to denote (protocol) participants.

Definition 12 (Types). Global types G and message types S, T are defined as:

G ::= p� q{i〈S〉 . G}i∈I | µX . G | X | • | skip . G
S, T ::= !T . S | ?T . S | ⊕{i : S}i∈I | &{i : S}i∈I | •

We include basic types (e.g., unit, bool, int), which are all syntactic sugar for •.

The type p � q{i〈Si〉 . Gi}i∈I specifies a direct exchange from participant p to participant q, which
precedes protocol Gi: p chooses a label i ∈ I and sends it to q along with a message of type Si. Message
exchange is asynchronous: the protocol can continue as Gi before the message has been received by q.
The type µX . G defines a recursive protocol: whenever a path of exchanges in G reaches the recursion
variable X, the protocol continues as µX . G. The type • denotes the completed protocol. For technical
convenience, we introduce the construct skip . G, which denotes an unobservable step that precedes G.

Recursive definitions bind recursion variables, so recursion variables not bound by a recursive defini-
tion are free. We write frv(G) to denote the set of free recursion variables of G, and say G is closed if
frv(G) = ∅. Recursion in global types is tail-recursive and contractive (i.e. they contain no subexpres-
sions of the form µX1 . . . µXn . X1). As for the session types in Section 2, we define the unfolding of
a recursive global type by substituting copies of the recursive definition for recursive calls, i.e. µX . G
unfolds to G{µX . G/X}.
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In approaches based on MPST, the grammar of global types specifies multiparty protocols but does
not ensure their correct implementability; such guarantees are given in terms of well-formedness, defined
as projectability onto all participants (cf. § 3.2).

Message types S, T define binary protocols, not to be confused with the types in § 2. Type !T . S
(resp. ?T . S) denotes the output (resp. input) of a message of type T followed by the continuation S.
Type ⊕{i : Si}i∈I denotes selection: the output of choice for a label i ∈ I followed by the continuation
Si. Type &{i : Si}i∈I denotes branching : the input of a label i ∈ I followed by the continuation Si.
Type • denotes the end of the protocol. Note that, due to the tail-recursiveness of session and global
types, there are no recursive message types.

It is useful to obtain the set of participants of a global type:

Definition 13 (Participants). We define the set of participants of global type G, denoted prt(G):

prt(p� q{i〈Si〉 . Gi}i∈I) := {p, q} ∪ (
⋃
i∈I prt(Gi)) prt(skip . G) := prt(G) prt(•) := ∅

prt(µX . G) := prt(G) prt(X) := ∅

3.1 Relative Types
While a global type such as Gauth (1) describes a protocol from a vantage point, we introduce relative
types that describe the interactions between pairs of participants. This way, relative types capture the
peer-to-peer nature of multiparty protocols. We develop projection from global types onto relative types
(cf. § 3.2) and use it to establish a new class of well-formed global types.

A choice between participants in a global type is non-local if it influences future exchanges between
other participants. Our approach uses dependencies to expose these non-local choices in the relative
types of these other participants.

Relative types express interactions between two participants. Because we obtain a relative type
through projection of a global type, we know which participants are involved. Therefore, a relative type
only mentions the sender of each exchange; we implicitly know that the recipient is the other participant.

Definition 14 (Relative Types). Relative types R are defined as follows, where the Si are message types
(cf. Def. 12):

R ::= p{i〈Si〉 . R}i∈I | p?r{i . R}i∈I | p!r{i . R}i∈I | µX . R | X | • | skip . R

We detail the syntax above, given participants p and q.

• Type p{i〈Si〉 .Ri}i∈I specifies that p must choose a label i ∈ I and send it to q along with a message
of type Si after which the protocol continues with Ri.

• Given an r which is not involved in the relative type (i.e., p 6= r, q 6= r), type p?r{i.Ri}i∈I expresses
a dependency: a non-local choice between p and r which influences the protocol between p and q.
Here, the dependency indicates that after p receives from r the chosen label, p must forward it to
q, determining the protocol between p and q.

• Similarly, type p!r{i . Ri}i∈I expresses a dependency, which indicates that after p sends to r the
chosen label, p must forward it to q.

• Types µX . R and X define recursion, just as their global counterparts.

• The type • specifies the end of the protocol between p and q.

• The type skip . R denotes an unobservable step that precedes R.

Definition 15 (Participants of Relative Types). We define the set of participants of relative type R,
denoted prt(R):

prt(p{i〈Si〉 . Ri}i∈I) := {p} ∪ (
⋃
i∈I prt(Ri)) prt(skip . R) := prt(R) prt(•) := ∅

prt(p?r{i . Ri}i∈I) := {p} ∪ (
⋃
i∈I prt(Ri)) prt(µX . R) := prt(R) prt(X) := ∅

prt(p!r{i . Ri}i∈I) := {p} ∪ (
⋃
i∈I prt(Ri))
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ddep((p, q), s� r{i〈Si〉 . Gi}i∈I) :=



skip . (Gi′ � (p, q)) [any i′ ∈ I] if ∀i, j.
Gi � (p, q) = Gj � (p, q)

p!r{i . (Gi � (p, q))}i∈I if p = s

q!r{i . (Gi � (p, q))}i∈I if q = s

p?s{i . (Gi � (p, q))}i∈I if p = r

q?s{i . (Gi � (p, q))}i∈I if q = r

................................................................................................................................................

(s� r{i〈Si〉 . Gi}i∈I) � (p, q) :=


p{i〈Si〉 . (Gi � (p, q))}i∈I if p = s and q = r

q{i〈Si〉 . (Gi � (p, q))}i∈I if q = s and p = r

ddep((p, q), s� r{i〈Si〉 . Gi}i∈I) otherwise

(µX . G) � (p, q) :=

{
µX . (G � (p, q)) if G � (p, q) defined and contractive on X
• otherwise

X � (p, q) := X • �(p, q) := • (skip . G) � (p, q) := skip . (G � (p, q))

Above, skip∗ denotes a sequence of zero or more skip.

Figure 5: Dependency Detection (top), and Relative Projection (bottom, cf. Definition 17).
When a side-condition does not hold, either is undefined.

We introduce some useful notation:

Notation 3.

• We write p� q : i〈S〉 . G for a global type with a single branch p� q{i〈S〉 . G} (and similarly for
exchanges and dependencies in relative types).

• We omit unit message types from global and relative types, writing i . G for i〈unit〉 . G.

• Given k > 1, we write skipk for a sequence of k skips.

3.2 Relative Projection and Well-Formedness
We define relative projection for global types. We want relative projection to fail when it would return
a non-contractive recursive type. To this end, we define a notion of contractiveness on relative types:

Definition 16 (Contractive Relative Types). Given a relative type R and a recursion variable X, we
say R is contractive on X if either of the following holds:

• R contains an exchange, or

• R ends in a recursive call on a variable other than X.

Relative projection then relies on the contractiveness of relative types. It also relies on an auxiliary
function to determine if a dependency message is needed and possible.

Definition 17 (Relative Projection). Given a global type G, we define its relative projection onto a
pair of participants p and q, denoted G � (p, q), by induction on the structure of G as given in Figure 5
(bottom), using the auxiliary function ddep (cf. Figure 5, top).

We discuss how Definition 17 projects global types onto a pair of participants (p, q), as per Figure 5
(bottom). The most interesting case is the projection of a direct exchange s�r{i〈Si〉 .Gi}i∈I . When the
exchange involves both p and q, the projection yields an exchange between p and q with the appropriate
sender. Otherwise, the projection relies on the function ‘ddep’ in Figure 5 (top), which determines
whether the exchange is a non-local choice for p and q and yields an appropriate projection accordingly:
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• If the projections of all branches are equal, the exchange is not a non-local choice and ddep yields
the unobservable step skip followed by the projection of any branch.

• If there are branches with different projections, the exchange is a non-local choice, so ddep yields a
dependency if possible. If p or q is involved in the exchange, ddep yields an appropriate dependency
(e.g., p!r if p is the sender, or q?s if q is the recipient). If neither p nor q are involved, then ddep
cannot yield a dependency and projection is thus undefined.

The projection of µX . G’ considers the projection of the body G′ � (p, q) to see whether p and q
interact in G′. If G′ � (p, q) is a (possibly empty) sequence of skips followed by • or X, then p and q
do not interact and the projection yields •. Otherwise, p and q do interact and projection preserves the
recursive definition. Note that Definition 16 (contractiveness) is key here: e.g., G′�(p, q) = skip.µY.skip.X
is not contractive on X, so (µX . G′) � (p, q) = •. The projections of recursive calls X, of •, and of skip
are homomorphic.

Example 2 (Projections of Gauth). To demonstrate relative projection, let us consider again Gauth:

Gauth = µX . s� c

{
login . c� a : passwd〈str〉 . a� s : auth〈bool〉 . X,
quit . c� a : quit . •

}
The relative projection onto (s, c) is straightforward, as there are no non-local choices to consider:

Gauth � (s, c) = µX . s

{
login . skip2 . X,
quit . skip . •

}
However, compare the projection of the initial login branch onto (s, a) and (c, a) with the projection of
the quit branch: they are different. Therefore, the initial exchange between s and c is a non-local choice
in the protocols relative to (s, a) and (c, a). Since s is involved in this exchange, the non-local choice is
detected by ddep:

ddep((s, a), s� c{login . . . , quit . . .}) = s!c{login . . . , quit . . .}

Hence, this non-local choice can be included in the relative projection onto (s, a) as a dependency:

Gauth � (s, a) = µX . s!c

{
login . skip . a : auth〈bool〉 . X,
quit . skip . •

}
Similarly, c is involved in the initial exchange, so the non-local choice can also be included in the relative
projection onto (c, a) as a dependency:

Gauth � (c, a) = µX . c?s

{
login . c : passwd〈str〉 . skip . X,
quit . c : quit〈unit〉 . •

}
Since relative types are relative to pairs of participants, the input order of participants for projection

does not matter:

Proposition 8. Suppose a global type G and distinct participants p, q ∈ prt(G).

• If G � (p, q) is defined, then G � (p, q) = G � (q, p) and prt(G � (p, q)) ⊆ {p, q};

• G � (p, q) is undefined if and only if G � (q, p) is undefined.

Well-formed Global Types Wemay now define well-formedness for global types. Unlike usual MPST
approaches, our definition relies exclusively on (relative) projection (Def. 17), and does not appeal to
external notions such as merge and subtyping [39, 58].

Definition 18 (Relative Well-Formedness). A global type G is relative well-formed if, for every distinct
p, q ∈ prt(G), the projection G � (p, q) is defined.

The following contrasts our new notion of relative well-formedness with notions of well-formedness
based on the usual notion of local types [37, 28].
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Figure 6: Two different networks of routed implementations for Gauth (1), without interleaving (left)
and with interleaving (right). For participants p and q̃, Definition 20 gives the router process JGKq̃p and
Definition 25 gives the set ri(G, q̃). Lines indicate channels and boxes are local compositions of processes.

Example 3. Consider the following global type involving participants p, q, r, s:

G3 := p� q

{
1〈Sa〉 . p� r : 1〈Sb〉 . p� s : 1〈Sc〉 . q� r : 1〈Sd〉 . q� s : 1〈Se〉 . •,
2〈Sf 〉 . r� p : 2〈Sg〉 . s� p : 2〈Sh〉 . r� q : 2〈Si〉 . s� q : 2〈Sj〉 . •

}
The initial exchange between p and q is a non-local choice influencing the protocols between other pairs
of participants. Well-formedness as in [37, 28] forbids non-local choices. In contrast, G3 is relative well-
formed: p and q must both forward the selected label to both r and s. The dependencies in the following
relative projections express precisely this:

G3 � (p, r) = p!q{1 . p : 1〈Sb〉 . skip3 . •, 2 . r : 2〈Sg〉 . skip3 . •}
G3 � (p, s) = p!q{1 . skip . p : 1〈Sc〉 . skip2 . •, 2 . skip . s : 2〈Sh〉 . skip2 . •}
G3 � (q, r) = q?p{1 . skip2 . q : 1〈Sd〉 . skip . •, 2 . skip2 . r : 2〈Si〉 . skip . •}
G3 � (q, s) = q?p{1 . skip3 . q : 1〈Se〉 . •, 2 . skip3 . s : 2〈Sj〉 . •}

Dependencies in relative types follow the non-local choices in the given global type: by implement-
ing such choices, dependencies ensure correct projectability. They induce additional messages, but in
our view this is an acceptable price to pay for an expressive notion of well-formedness based only on
projection. It is easy to see that in a global type with n participants, the number of messages per
communication is O(n)—an upper-bound following from the worst-case scenario in which both sender
and recipient have to forward a label to n−2 participants due to dependencies, as in the example above.
However, in practice, sender and recipient will rarely both have to forward labels, let alone both to all
participants.

4 Analyzing Global Types using Routers
In this section, we develop our decentralized analysis of multiparty protocols (§ 3) using relative types
(§ 3.1) and APCP (§ 2). The intended setup is as follows. Each participant’s role in a global type G is
implemented by a process, which is connected to a router : a process that orchestrates the participant’s
interactions in G. The resulting routed implementations (Def. 25) can then directly connect to each other
to form a decentralized network of routed implementations that implements G. This way we realize the
scenario sketched in Figure 1 (left), which is featured in more detail in Figure 6 (left).

Key in our analysis is the synthesis of a participant’s router from a global type (§ 4.1). To assert
well-typedness—and thus deadlock-freedom—of networks of routed implementations (Theorem 11), we
extract binary session types from the global type and its associated relative types (§ 4.2):

• from the global type we extract types for channels between implementations and routers;

• from the relative types we extract types for channels between pairs of routers.
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After defining routers and showing their typability, we set up networks of routed implementations
of global types (§ 4.3). To enable the transference of deadlock-freedom APCP to multiparty protocols,
we then establish an operational correspondence between global types and networks of routed imple-
mentations (Theorems 19 and 23). Finally, to show that our routed approach strictly generalizes the
prior centralized analyses [12, 17], we define an orchestrated analysis of global types and show that it is
behaviorally equivalent to a centralized composition of routers (§ 4.4).

In the following section (§ 5), we will show routers in action.

4.1 Synthesis of Routers
We synthesize routers by decomposing each exchange in the global type into four sub-steps, which
we motivate by considering the initial exchange from s to c in Gauth (1): s� c{login . . . , quit . . .}. As
explained in Example 2, this exchange induces a dependency in the relative projections of Gauth onto (s, a)
and (c, a). We decompose this initial exchange as follows, where P , Q, and R are the implementations of
c, s, and a, respectively (given in Example 1) and Rx stands for the router of each x ∈ {s, c, a}. Below,
multiple actions in one step happen concurrently:

1. Q sends ` ∈ {login, quit} to Rs.

2. Rs sends ` to Rc (recipient) and Ra (output dependency). Q sends unit value v to Rs.

3. Rc sends ` to P and Ra (input dependency). Rs forwards v to Rc.

4. Rc forwards v to P . Ra sends ` to R.

In Section 4.2, we follow this decomposition to assign to each consecutive step a consecutive priority:
this ensures the consistency of priority checks required to establish the deadlock-freedom of networks of
routed implementations.

We define an algorithm that synthesizes a router process for a given global type and participant. More
precisely: given G, a participant p, and q̃ = prt(G)\{p}, the algorithm generates a process, denoted JGKq̃p,
which connects with a process implementing p’s role in G on channel µp; we shall write such channels
in pink. This router for p connects with the routers of the other participants in G (qi ∈ q̃) on channels
pq1 , . . . , pqn ; we shall write such channels in purple. (This convention explains the colors of the lines in
Figure 6.)

The router synthesis algorithm relies on relative projection to detect non-local choices; this way, the
router can synchronize with the participant’s implementation and with other routers appropriately. To
this end, we define the predicate ‘hdep’, which is true for an exchange and a pair of participants if the
exchange induces a dependency for either participant. Recall that relative projection produces a skip
when an exchange is not non-local (cf. Figure 5). Thus, hdep only holds true if relative projection does
not produce a skip.

Definition 19. The predicate hdep(q, p,G) is true if and only if

• G = s� r{i〈Si〉 . Gi}i∈I and q /∈ {s, r} and p ∈ {s, r}, and

• ddep((p, q), G) 6= skip . R for all relative types R, where ddep is as in Fig. 5 (top).

Example 4. Consider the global type Gh := p� q{a . p� r : a . •, b . r� p : b . •}. We have that
hdep(q, p,Gh) is false because the initial exchange in Gh is not a dependency for p and q, but hdep(r, p,Gh)
is true because the initial exchange in Gh is indeed a dependency for p and r.

Definition 20 (Router Synthesis). Given a global type G, a participant p, and participants q̃, Algorithm 1
defines the synthesis of a router process, denoted JGKq̃p, that interfaces the interactions of pwith the other
protocol participants according to G.

We often write Rp for JGKprt(G)\{p}
p when G is clear from the context.

Algorithm 1 distinguishes six cases depending on the syntax of G (Def. 12). The key case is
s� r{i〈Ui〉 . Gi}i∈I (line 3). First, the algorithm computes a set deps of participants that depend
on the exchange using hdep (cf. Def. 19). Then, the algorithm considers the three possibilities for p:
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Algorithm 1: Synthesis of Router Processes (Def. 20).

1 def JGKq̃p as
2 switch G do
3 case s� r{i〈Si〉 . Gi}i∈I do
4 deps := {q ∈ q̃ | hdep(q, p,G)}
5 if p = s then return µp .

{
i : pr / i · (pq / i)q∈deps

· µp(v) . pr[w] · (v↔ w | JGiKq̃p)
}
i∈I

6 else if p = r then return ps .
{
i : µp / i · (pq / i)q∈deps

· ps(v) . µp[w] · (v↔w | JGiKq̃p)
}
i∈I

7 else if p /∈ {s, r} then
8 depons := (s ∈ q̃ ∧ hdep(p, s,G))
9 deponr := (r ∈ q̃ ∧ hdep(p, r,G))

10 if depons and ¬deponr then return ps .
{
i : µp / i · JGiK

q̃
p

}
i∈I

11 else if deponr and ¬depons then return pr .
{
i : µp / i · JGiK

q̃
p

}
i∈I

12 else if depons and deponr then return ps .
{
i : µp / i · pr / {i : JGiK

q̃
p}
}
i∈I

13 else return JGjK
q̃
p for any j ∈ I

14 case µX . G′ do
15 q̃′ := {q ∈ q̃ | G � (p, q) 6= •}
16 if q̃′ 6= ∅ then return µX(µp, (pq)q∈q̃′) . JG

′Kq̃
′

p

17 else return 0

18 case X do return X〈µp, (pq)q∈q̃〉
19 case skip . G′ do return JG′Kq̃p
20 case • do return 0

1. If p = s then p is the sender (line 5): the algorithm returns a process that receives a label i ∈ I
over µp; sends i over pr and over pq for every q ∈ deps; receives a channel v over µp; forwards v as
w over pr; and continues as JGiK

q̃
p.

2. If p = r then p is the recipient (line 6): the algorithm returns a process that receives a label i ∈ I
over ps; sends i over µp and over pq for every q ∈ deps; receives a channel v over ps; forwards v as
w over µp; and continues as JGiK

q̃
p.

3. Otherwise, if p is not involved (line 7), we use hdep to determine whether p depends on an output
from s, an input from r, or on both (lines 8 and 9). If p only depends on the output from s, the
algorithm returns a process that receives a label i ∈ I over ps; sends i over µp; and continues as
JGiK

q̃
p (line 10). If p only depends on an input from r, the returned process is similar; the only

difference is that i is received over pr (line 11).

When p depends on both the output from s and on the input from r (line 12), the algorithm
returns a process that receives a label i ∈ I over ps; sends i over µp; receives the label i over pr;
and continues as JGiK

q̃
p.

If there are no dependencies, the returned process is JGjK
q̃
p, for arbitrary j ∈ I (line 13).

In case µX.G′ (line 14), the algorithm stores in q̃′ those q ∈ q̃ that interact with p inG′ (i.e. µX.G′�(p, q) 6=
•). Then, if q̃′ is non-empty (line 16), the algorithm returns a recursive definition with as context the
channels pq for q ∈ q̃′ and µp. Otherwise, the algorithm returns 0 (line 17). In case X (line 18), the
algorithm returns a recursive call with as context the channels pq for q ∈ q̃ and µp. In case skip . G′

(line 19), it continues with G′ immediately. Finally, in case • (line 20), the algorithm returns 0.
Considering the number of steps required to return a process, the complexity of Algorithm 1 is

linear in the size of the given global type (defined as the sum of the number of communications over all
branches).
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Below, o ∈ N is arbitrary:

L • M := • L!T . SM := LT M⊗o LSM L⊕{i : Si}i∈IM := ⊕o{i : LSiM}i∈I
L?T . SM := LT M

&o LSM L&{i : Si}i∈IM := &o{i : LSiM}i∈I

................................................................................................................................................
If G = s� r{i〈Si〉 . Gi}i∈I ,

G �o p :=



⊕o{i : LSiM⊗o+1 (Gi �
o+4 p)}i∈I if p = s

&o+2{i : LSiM

&o+3 (Gi �
o+4 p)}i∈I if p = r

&o+2{i : (Gi �
o+4 p)}i∈I if p /∈ {s, r} and hdep(p, s,G)

&o+3{i : (Gi �
o+4 p)}i∈I if p /∈ {s, r} and ¬hdep(p, s,G) and hdep(p, r,G)

Gi′ �
o+4 p [any i′ ∈ I] otherwise

Otherwise,

• �op := • (skip . G′) �o p := G′ �o+4 p X �o p := X

(µX . G′) �o p :=

{
µX . (G′ �o p) if G′ �o p defined and contractive on X
• otherwise

Figure 7: Extracting Session Types from Message Types (top), and Local Projection: Extracting Session
Types from a Global Type (bottom, cf. Definition 23).

4.2 Types for the Router’s Channels
Here, we obtain session types (cf. Def. 1) for (i) the channels between routers and implementations
(§ 4.2.1) and for (ii) the channels between pairs of routers (§ 4.2.2). While the former are extracted from
global types, the latter are extracted from relative types.

4.2.1 The Channels between Routers and Implementations

We begin with the session types for the channels between routers and implementations (given in pink),
which we extract directly from the global type. A participant’s implementation performs on this channel
precisely those actions that the participant must perform as per the global type. Hence, we define this
extraction as a form of local projection of the global type onto a single participant. The resulting session
type may used as a guidance for specifying a participant implementation, which can then connect to the
router’s dually typed channel endpoint.

Global types contain message types (Def. 12), so we must first define how we extract session types
from message types. This is a straightforward definition, which leaves priorities unspecified: they do not
matter for the typability of routers, which forward messages between implementations and other routers.
Note that one must still specify these priorities when type-checking implementations, making sure they
concur between sender and recipient.

Definition 21 (From Message Types to Session Types). We define the extraction of a session type from
message type S, denoted LSM, by induction on the structure of S as in Figure 7 (top).

We now define local projection. To deal with non-local choices, local projection incorporates de-
pendencies by relying on the dependency detection of relative projection (cf. Def. 17). Also similar to
relative projection, local projection relies on a notion of contractiveness for session types.

Definition 22 (Contractive Session Types). Given a session type A and a recursion variable X, we say
A is contractive on X if either of the following holds:

• A contains a connective in {⊗,

&

,⊕,&}, or
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Ls{i〈Si〉 . Ri}i∈IMo
p〉q :=


⊕o+1

{
i : LSiM⊗o+2 LRiM

o+4
p〉q

}
i∈I

if p = s

&o+1
{
i : LSiM

&o+2 LRiM
o+4
p〉q

}
i∈I

if q = s

Lr?s{i . Ri}i∈IMo
p〉q :=


⊕o+2

{
i : LRiM

o+4
p〉q

}
i∈I

if p = r

&o+2
{
i : LRiM

o+4
p〉q

}
i∈I

if q = r

Ls!r{i . Ri}i∈IMo
p〉q :=


⊕o+1

{
i : LRiM

o+4
p〉q

}
i∈I

if p = s

&o+1
{
i : LRiM

o+4
p〉q

}
i∈I

if q = s

L • Mo
p〉q := • Lskip . RMo

p〉q := LRMo+4
p〉q LµX . RMo

p〉q := µX . LRMo
p〉q LXMo

p〉q := X

Figure 8: Extracting Session Types from Relative Types (cf. Definition 24).

• A is a recursive call on a variable other than X.

Definition 23 (Local Projection: From Global Types to Session Types). We define the local projection
of global type G onto participant p with priority o, denoted G �o p, by induction on the structure of G as
in Figure 7 (bottom), relying on message type extraction (Def. 21) and the predicate hdep (Def. 19).

We consider the local projection of an exchange in a global type onto a participant p with priority o.
The priorities in local projection reflect the four sub-steps into which we decompose exchanges in global
types (cf. Section 4.1). There are three possibilities, depending on the involvement of p in the exchange:

1. If p is the sender, local projection specifies a choice (⊕) between the exchange’s labels at priority
o and an output (⊗) of the associated message type at priority o+ 1, followed by the projection of
the chosen branch at priority o + 4.

2. If p is the recipient, local projection specifies a branch (&) on the exchange’s labels at priority o+2
and an input (

&

) of the associated message type at priority o+ 3, followed by the projection of the
chosen branch at priority o + 4.

3. If p is neither sender nor recipient, local projection uses the predicate hdep (Def. 19) to detect
a dependency on the sender’s output or the recipient’s input. If there is a dependency on the
output, local projection specifies a branch on the exchange’s labels at priority o + 2. If there is a
dependency on the input, local projection specifies a branch at priority o + 3. Otherwise, when
there is no dependency at all, local projection simply continues with the projection of any branch
at priority o + 4.

Projection only preserves recursive definitions if they contain actual behavior (i.e. the projection of
the recursive loop is contractive, cf. Definition 22). The projections of • and recursion variables are
homomorphic. The projection of skip simply projects the skip’s continuation, at priority o + 4 to keep
the priority aligned with the priorities of the other types of the router.

4.2.2 The Channels between Pairs of Routers

For the channels between pairs of routers (given in purple), we extract session types from relative
types (Def. 14). Considering a relative type that describes the protocol between p and q, this entails
decomposing it into a type for p and a dual type for q.

Definition 24 (From Relative Types to Session Types). We define the extraction of a session type from
relative type R between p and q at p’s perspective with priority o, denoted LRMo

p〉q, by induction on the
structure of R as in Figure 8.
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Here, extraction is directional : in LRMo
p〉q, the annotation p〉q says that the session type describes the

perspective of p’s router with respect to q’s. Messages with sender p are decomposed into selection (⊕)
at priority o + 1 followed by output (⊗) at priority o + 2. Dependencies on messages recieved by p
become selection types (⊕) at priority o + 1, and dependencies on messages sent by p become selection
types (⊕) at priority o + 2. Messages from q and dependencies on q yield dual types. Extraction from •
and recursion is homomorphic, and extraction from skip simply extracts from the skip’s continuation at
priority o + 4.

This way, the channel endpoint of p’s router that connects to q’s router will be typed LG � (p, q)Mo
p〉q,

i.e. the session type extracted from the relative projection of G onto p, q at p’s perspective. Similarly, the
endpoint of this channel at q’s router will have the type LG � (p, q)Mo

q〉p, i.e. the same relative projection
but at q’s perspective. Clearly, these session types must be dual.

Theorem 9. Given a relative well-formed global type G and p, q ∈ prt(G),

LG � (p, q)Mo
p〉q = LG � (p, q)Mo

q〉p.

Proof. By construction from Definition 17 and Definition 24.

4.3 Networks of Routed Implementations
Having defined routers and types for their channels, we now turn to defining networks of routed im-
plementations, i.e., process networks of routers and implementations that correctly represent a given
multiparty protocol. Then, we appeal to the types obtained in § 4.2 to establish the typability of routers
(Theorem 11). Finally, we show that all networks of routed implementations of well-formed global types
are deadlock-free (Theorem 18), and that networks of routed implementations behave as depicted by the
global types from which they are generated (Theorems 19 and 23).

We begin by defining routed implementations, which connect implementations of subsets of protocol
participants with routers:

Definition 25 (Routed Implementations). Given a closed, relative well-formed global type G, for par-
ticipants p̃ ⊆ prt(G), the set of routed implementations of p̃ in G is defined as follows (cf. Def. 23 for
local projection ‘ �’ and Def. 20 for router synthesis ‘ J. . .K’):

ri(G, p̃) :=

{
(νµppµ)p∈p̃ (Q |

∏
p∈p̃Rp)

∣∣∣∣∣ Q ` ∅; Γ, (pµ : G �0 p)
p∈p̃

∧ ∀p ∈ p̃. Rp = JGKprt(G)\{p}
p

}

We write Np̃,N ′p̃, . . . to denote elements of ri(G, p̃).

Thus, the composition of a collection of routers and an implementation Q is a routed implementation
as long as Q can be typed in a context that includes the corresponding projected types. Note that
the parameter p̃ indicates the presence of interleaving : when p̃ is a singleton, the set ri(G, p̃) contains
processes in which there is a single router and the implementation Q is single-threaded (non-interleaved);
more interestingly, when p̃ includes two or more participants, the set ri(G, p̃) consists of processes in which
the implementation Q interleaves the roles of the multiple participants in p̃.

A network of routed implementations of a global type, or simply a network, is then the composition
of any combination of routed implementations that together account for all the protocol’s participants.
Hence, we define sets of networks, quantified over all possible combinations of sets of participants and
their respective routed implementations. The definition relies on complete partitions of the participants
of a global type, i.e., a split of prt(G) into non-empty, disjoint subsets whose union yields prt(G).

Definition 26 (Networks). Suppose given a closed, relative well-formed global type G. Let PG be the set
of all complete partitions of prt(G) with elements π, π′, . . .. The set of networks of G is defined as

net(G) :=
{

(νpqqp)p,q∈prt(G)(
∏
p̃∈πNp̃)

∣∣ π ∈ PG ∧ ∀p̃ ∈ π. Np̃ ∈ ri(G, p̃)
}
.

We write N ,N ′, . . . to denote elements of net(G).

Example 5. Figure 6 depicts two networks in net(Gauth) related to different partitions of prt(Gauth),
namely

{
{a}, {s}, {c}

}
(non-interleaved) on the left and

{
{a, s}, {c}

}
(interleaved) on the right.
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JGauthK
{s,a}
c

router

cµ: Gauth �
o c µc: Gauth �

o c cs: LGauth � (c, s)M
o
c〉s

ca: LGauth � (c, a)Mo
c〉a

Definition 23 Definition 20 Definition 17 Definition 24

Figure 9: Overview of Theorem 11, with the definitions and notations for synthesizing and typing routers,
using participant c ofGauth implemented as P (cf. Example 1). Boxes indicate processes and lines indicate
channels.

Because a network N may not be typable under the empty typing context, we have the following
definition to “complete” networks.

Definition 27 (Completable Networks). Suppose given a network N such that N ` ∅; Γ. We say that N
is completable if (i) Γ is empty or (ii) there exist ṽ, w̃ such that (νṽw̃)N ` ∅; ∅. When N is completable,
we write N� to stand for N (if N ` ∅; ∅) or (νṽw̃)N (otherwise).

Proposition 10. For any closed, relative well-formed global type G, there exists at least one completable
network N ∈ net(G).

Proof. To construct a completable network in net(G), we construct a routed implementation (Def. 25) for
every p ∈ prt(G). Given a p ∈ prt(G), by Proposition 1, there exists Q ` ∅; pµ : G �0 p. Composing each
such characteristic implementation process with routers, and then composing the routed implementations,
we obtain a network N ∈ net(G), where N ` ∅; ∅. Hence, N is completable.

4.3.1 The Typability of Routers

We wish to establish that the networks of a global type are deadlock-free. This result, formalized by
Theorem 18 (Page 37), hinges on the typability of routers, which we address next. Figure 9 gives an
overview of the definitions and notations involved in this theorem’s statement.

Theorem 11. Suppose given a closed, relative well-formed global type G, and a p ∈ prt(G). Then,

JGKprt(G)\{p}
p ` ∅; µp : G �0 p,

(
pq : LG � (p, q)M0p〉q

)
q∈prt(G)\{p}

.

This result is a corollary of Theorem 16 (Page 28), which we show next. We give a full proof on Page 36,
after the proof of Theorem 16.

Alarm Processes We focus on networks of routed implementations—compositions of synthesized
routers and well-typed processes. However, in order to establish the typability of routers we must
account for an edge case that goes beyond these assumptions, namely when a routed implementation is
connected to some undesirable implementation, not synthesized by Algorithm 1. Consider the following
example:

Example 6. Consider again the global type Gauth, which, for the purpose of this example, we write as
follows:

Gauth = s� c

{
login : Glogin,
quit : Gquit

}
As established in Example 2, the initial exchange between s and c determines a dependency for the
interactions of a with both s and c. Therefore, the implementation of a needs to receive the choice
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between login and quit from the implementations of both s and c. An undesirable implementation for c,
without a router, could be for instance as follows:

R′ := cs .

{
login : ca / quit · . . . ,
quit : ca / quit · . . .

}
Notice how R′ always sends to a the label quit, even if the choice made by s (and sent to c) is login.
Now, if s chooses login, the router of a is in limbo: on the one hand, it expects s to behave as specified
in Glogin; on the other hand, it expects c to behave as specified in Gquit. Clearly, the router of a is in an
inconsistent state due to c’s implementation.

Because routers always forward the chosen label correctly, this kind of undesirable behavior never occurs
in the networks of Definition 26—we state this formally in § 4.3.2 (Theorem 17). Still, in order to
prove that our routers are well-typed, we must accommodate the possibility that a router ends up in an
undesirable state due to inconsistent forwarding. For this, we extend APCP with an alarm process that
signals an inconsistency on a given set of channel endpoints.

Definition 28 (Alarm Process). Given channel endpoints x̃ = x1, . . . , xn, we write alarm(x̃) to denote
an inconsistent state on those endpoints.

In a way, alarm(x̃) is closer to an observable action (a “barb”) than to an actual process term: alarm(x̃)
does not have reductions, and no process from Figure 3 (top) can reduce to alarm(x̃). We assume that
alarm(x̃) does not occur in participant implementations (cf. Q in Definition 25); we treat it as a process
solely for the purpose of refining the router synthesis algorithm (Algorithm 1) with the possibility of
inconsistent forwarding. The refinement concerns the process on line 12:

ps .
{
i : µp / i · pr / {i : JGiK

q̃
p}
}
i∈I

We extend it with additional branches, as follows:

ps .
{
i : µp / i · pr /

{i : JGiK
q̃
p}

∪ {i′ : alarm(µp, (pq)q∈q̃)}i′∈I\{i}

}
i∈I (2)

This new process for line 12 captures the kind of inconsistency illustrated by Example 6, which occurs
when a label i ∈ I is received over ps after which a label i′ ∈ I \ {i} is received over pr. We account for
this case by using the underlined alarm processes.

Routers are then made of processes as in Figure 3 (top), selectively extended with alarms as just
described. Because alarm(x̃) merely acts as an observable that signals undesirable behavior, we find it
convenient to type it using the following axiom:

alarm(x1, . . . , xn) ` Ω;x1 : A1, . . . , xn : An
Alarm

where the recursive context Ω and types A1, . . . , An are arbitrary.

Context-based Typability Considering the refinement of Algorithm 1 with alarm processes, we
prove Theorem 16 on Page 28, from which Theorem 11 follows as a corollary. It relies on some additional
auxiliary definitions and results.

To type the router for a participant at any point in the protocol, we need the definition of the
entire protocol. It is not enough to only consider the current (partial) protocol at such points: we need
information about bound recursion variables in order to perform unfolding in types. To this end, we
define global contexts, that allow us to look at part of a protocol while retaining definitions that concern
the entire protocol.

Definition 29 (Global Contexts). Global contexts C are given by the following grammar:

C ::= p� q

(
{i〈S〉 . G}i∈I
∪ {i′〈S〉 . C}i′ /∈I

)
| skip . C | µX . C | []

We often simply write “context” when it is clear that we are referring to a global context. Given a context
C and a global type G, we write C[G] to denote the global type obtained by replacing the hole [] in C with
G. If G = C[Gs] for some context C and global type Gs, then we write Gs ≤C G.
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As mentioned before, a context captures information about the recursion variables that are bound at
any given point in a global type. Our goal is to obtain a context-based typability result for routers.

The order in which recursive variables are bound is important to correctly unfold types:

Example 7. Consider the following global type with three nested recursive definitions:

Grec = µX . a� b : 1 . µY . a� b : 2 . µZ . a� b{x : X, y : Y, z : Z}

To type the router for, e.g., a at the final exchange between a and b, we need to be aware of the unfolding
of recursion. The recursion on X, Y , and Z have all to be unfolded, and the recursion on Z must include
first the unfolding of X and then the unfolding of Y , which must in turn include the prior unfolding of X.

To account for nested recursions, the following definition gives the bound variables of a context exactly
in the order in which they appear:

Definition 30 (Recursion Binders of Contexts). Given a global context C, the sequence of recursion
binders to the hole of C, denoted ctxbind(C), is defined as follows:

ctxbind(µX . C) := (X, ctxbind(C)) ctxbind(skip . C) := ctxbind(C) ctxbind([]) := ()

ctxbind(p� q

(
{i〈Si〉 . Gi}i∈I
∪ {i′〈Si′〉 . C}i′ /∈I

)
) := ctxbind(C)

Given Gs ≤C G, the sequence of recursion binders of Gs, denoted subbind(Gs, G), is defined as ctxbind(C).

The following retrieves the body of a recursive definition from a global context, informing us on how to
unfold types:

Definition 31 (Recursion Extraction). The function recdef(X,G) extracts the recursive definition on
X from G, i.e. recdef(X,G) = G′ if µX . G′ ≤C G for some context C. Also, recCtx(X,G) extracts the
context of the recursive definition on X in G, i.e. recCtx(X,G) = C if µX . recdef(X,G) ≤C G.

When unfolding bound recursion variables, we need the priorities of the unfolded types. The following
definition gives a priority that is expected at the hole in a context, as well as the priority expected at
any recursive definition in a global type:

Definition 32 (Absolute Priorities of Contexts). Given a context C and o ∈ N, we define ctxprio(C) as
follows:

ctxprio([]) := o ctxprio(skip . C) := ctxprio+4(C) ctxprio(µX . C) := ctxprio(C)

ctxprio(p� q

(
{i〈Si〉 . Gi}i∈I
∪ {i′〈Si′ . C}i′ /∈I

)
) := ctxprio+4(C)

Then, the absolute priority of C, denoted ctxpri(C), is defined as ctxpri0(C). The absolute priority of X
in G, denoted varpri(X,G), is defined as ctxpri(C) for some context C such that µX.recdef(X,G) ≤C G.

To avoid non-contractive recursive types, relative projection (cf. Figure 5) closes a type when the
participants do not interact inside a recursive definition. Hence, when typing a router for a recursive
definition, we must determine which pairs of participants are “active” at any given point in a protocol,
and close the connections with the “inactive” participants.

Example 8. Consider the following global type, where a client (c) requests two independent, infinite
Fibonacci sequences (f1 and f2):

Gfib = c� f1 : init〈int× int〉 . c� f2 : init〈int× int〉 . µX . f1� c : next〈int〉 . f2� c : next〈int〉 . X︸ ︷︷ ︸
G′fib

Participants f1 and f2 do not interact with each other in the body of the recursion, as formalized by their
relative projection:

recdef(X,Gfib) � (f1, f2) = skip . skip . X

Hence, G′fib � (f1, f2) = •, and f1 and f2 do not form an active pair of participants for the recursion in
Gfib. Therefore, f1’s router closes its connection with f2’s router at the start of the recursion on X, and
vice versa.
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The following definition uses relative projection to determine the pairs of active participants at the hole
of a context, as well as at any recursive definition in a global type. We consider pairs of participants
(p, q) and (q, p) to be equivalent.

Definition 33 (Active Participants). Suppose given a relative well-formed global type G. The following
mutually defined functions compute sets of pairs of active participants for recursive definitions and
contexts, denoted recactive(X,G) and active(C,G), respectively.

recactive(X,G) := {(p, q) ∈ active(recCtx(X,G), G) | (µX . recdef(X,G)) � (p, q) 6= •}

active(C,G) :=

{
recactive(Y,G) if ctxbind(C) = (X̃, Y )

prt(G)2 otherwise

The interdependency between recactive(X,G) and active(C,G) is well-defined: the former function con-
siders the active participants of a context, which contains less recursive definitions.

When typing a router for a given protocol, we have to keep track of assignments in the recursive context
at any point in the protocol. The following two lemmas ensure that the active participants of recursive
definitions are consistent with the active participants of their bodies.

Lemma 12. Suppose given a closed, relative well-formed global type G, and a global type Gs and context
C such that Gs ≤C G. For any Z ∈ ctxbind(C), active(C,G) ⊆ recactive(Z,G).

Proof. Take any Z ∈ ctxbind(C). Then ctxbind(C) = (X̃, Y ). By definition,
active(C,G) = recactive(Y,G). If Y = Z, the thesis is proven. Otherwise, by definition,
recactive(Y,G) ⊆ active(recCtx(Y,G), G). Since the recursive definition on Z appears in recCtx(Y,G),
it follows by induction on the size of X̃ that active(recCtx(Y,G), G) ⊆ recactive(Z,G). This proves the
thesis.

The following lemma ensures that when typing a recursive call, the endpoints given as context for the
recursive call concur with the endpoints in the recursive context:

Lemma 13. Suppose given a closed, relative well-formed global type G, a recursion variable Z, and a
context C such that Z ≤C G. Then, active(C,G) = recactive(Z,G).

Proof. Because G = C[Z] and G is closed (i.e. frv(G) = ∅), there is a recursive definition on Z in G.
Hence, ctxbind(C) 6= ∅, i.e. ctxbind(C) = (X̃, Y ) and active(C,G) = recactive(Y,G). If Y = Z, the thesis
is proven. Otherwise, the recursive definition on Y in G appears somewhere inside the recursive definition
on Z. Suppose, for contradiction, that active(C,G) 6= recactive(Z,G). There are two cases: there exists
(p, q) ∈ prt(G)

2 s.t. (i) (p, q) ∈ active(C,G) and (p, q) /∈ recactive(Z,G), or (ii) (p, q) ∈ recactive(Z,G)
and (p, q) /∈ active(C,G). Case (i) contradicts Lemma 12.

In case (ii), (µZ . recdef(Z,G)) � (p, q) 6= • and (µY . recdef(Y,G)) � (p, q) = •. The recursive call on
Z in G appears somewhere inside the recursive definition on Y , and hence recdef(Y,G) � (p, q) contains
the recursive call on Z. This means that recdef(Y,G) � (p, q) is contractive on Y (Def. 16), and hence
(µY . recdef(Y,G)) � (p, q) 6= •, contradicting the assumption.

Our typability result for routers relies on relative and local projection. Hence, we need to guarantee
that all the projections we need at any given point of a protocol are defined. The following result shows
a form of compositionality for relative and local projection, guaranteeing the definedness of projections
for all active participants of a given context:

Proposition 14. Suppose given a closed, relative well-formed global type G, and a global type Gs such
that Gs ≤C G. Then, for every (p, q) ∈ active(C,G), the relative projection Gs � (p, q) is defined. Also,
for every p ∈ {p ∈ prt(G) | ∃q ∈ prt(G). (p, q) ∈ active(C,G)}, the local projection Gs �o p is defined for
any priority o.

Proof. Suppose that, for contradiction, Gs � (p, q) is undefined. We show by induction on the structure
of C that this means that G � (p, q) is undefined, contradicting the relative well-formedness of G.

• Hole: C = []. We have Gs = G, and the thesis follows immediately.
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• Exchange: C = r � s

(
{i〈Si〉 . Gi}i∈I
∪ {i′〈Si′〉 . C ′}i′ /∈I

)
. By the IH, C ′[Gs] � (p, q) is undefined. Since the

relative projection of an exchange relies on the relative projection of each of the exchange’s branches,
G � (p, q) is undefined.

• Skip: C = skip . C ′. By the IH, C ′[Gs] � (p, q) is undefined. Since the relative projection of a skip
relies on the relative projection of the skip’s continuation, G � (p, q) is undefined.

• Recursive definition: C = µX . C ′. It follows from Lemma 12 that active(C,G) ⊆ recactive(X,G).
Hence, (p, q) ∈ recactive(X,G), and thus (µX . recdef(X,G)) � (p, q) = (µX . C ′[Gs]) � (p, q) 6= •,
which means that C ′[Gs] � (p, q) is defined. This contradicts the IH.

The proof for the definedness of local projection is analogous.

Recall Example 7, where nested recursive definitions in a protocol require nested unfolding of recursive
types. The following definition gives us a concise way of writing such nested (or deep) unfoldings:

Definition 34 (Deep Unfolding). Suppose given a sequence of tuples Ũ , with each tuple consisting of a
recursion variable Xi, a lift ti ∈ N, and a type Bi. The deep unfolding of the type A with Ũ , denoted
deepUnfold(A, Ũ), is the type defined as follows:

deepUnfold(A, ()) := A

deepUnfold(A, (Ũ , (X, t,B))) := deepUnfold(A, Ũ){
(
µX . (↑tdeepUnfold(B, Ũ))

)
/X}

When typing a router’s recursive call, the types of the router’s endpoints are unfoldings of the types in
the recursive context. However, because of the deep unfolding in types, this is far from obvious. The
following result connects a particular form of deep unfolding with regular unfolding.

Proposition 15. Suppose given a type A and a sequence of tuples Ũ consisting of a recursion variable,
a lift, and a substitution type. Then,

deepUnfold(A, (Ũ , (X, t,A))) = unfoldt(µX . deepUnfold(A, Ũ)).

Proof. By Definition 34:

deepUnfold(A, (Ũ , (X, t,A))) = deepUnfold(A, Ũ){
(
µX . (↑tdeepUnfold(A, Ũ))

)
/X}

= unfoldt(µX . deepUnfold(A, Ũ))

Armed with these definitions and results, we can finally state our context-based typability result for
routers:

Theorem 16. Suppose given a closed, relative well-formed global type G. Also, suppose given a global type
Gs such that Gs ≤C G, and a p ∈ prt(G) for which there is a q ∈ prt(G) such that (p, q) ∈ active(C,G).
Consider:

• the participants with whom p interacts in Gs: q̃ = {q ∈ prt(G) | (p, q) ∈ active(C,G)},

• the absolute priority of Gs: oC = ctxpri(C),

• the sequence of bound recursion variables of Gs: X̃C = ctxbind(C),

• for every X ∈ X̃C :

– the body of the recursive definition on X in G: GX = recdef(X,G),
– the participants with whom p interacts in GX : q̃X = {q ∈ prt(G) | (p, q) ∈ recactive(X,G)},
– the absolute priority of GX : oX = varpri(X,G),

– the sequence of bound recursion variables of GX excluding X: ỸX = subbind(µX . GX , G),
– the type required for µp for a recursive call on X:

AX,p = deepUnfold(GX �
oX p, (Y, tY , GY �

oY p)
Y ∈ỸX ),
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– the type required for pq for a recursive call on X:

BX,q = deepUnfold(LGX � (p, q)MoX
p〉q, (Y, tY , LGY � (p, q)MoY

p〉q)Y ∈ỸX
),

– the minimum lift for typing a recursive definition on X: tX = maxpr

(
AX , (BX,q)q∈q̃X

)
+ 1,

• the type expected for µp for p’s router for Gs:

Dp = deepUnfold(Gs �
oC p, (X, tX , GX �

oX p)
X∈X̃C ),

• the type expected for pq for p’s router for Gs:

Eq = deepUnfold(LGs � (p, q)MoC
p〉q, (X, tX , LGX � (p, q)MoX

p〉q)X∈X̃C
).

Then, we have:

JGsK
q̃
p `

(
X :

(
AX , (BX,q)q∈q̃X

))
X∈X̃C

; µp : Dp, (pq : Eq)q∈q̃

Proof. We apply induction on the structure of Gs, with six cases as in Algorithm 1. We only detail the
cases of exchange and recursion. Axiom Alarm is used in only one sub-case (case 3(c), cf. Figure 11
below).

• Exchange: Gs = s� r{i〈Si〉 . Gi}i∈I (line 3).

In this case, we add connectives to the types obtained from the IH. Since we do not introduce any
recursion variables to these types, the substitutions in the types from the IH are not affected. Hence,
we can omit these substitutions from the types. Also, for each i ∈ I, we have frv(Gi) ⊆ frv(Gs), i.e.
the recursive context remains untouched in this derivation, so we also omit the recursive context.

Let deps := {q ∈ q̃ | hdep(q, p,Gs)} (as on line 4). There are three cases depending on the
involvement of p.

1. If p = s, then p is the sender (line 5).
Let us consider the relative projections onto p and the participants in q̃. For the recipient r,

Gs � (p, r) = p{i . (Gi � (p, r))}i∈I . (3)

For each q ∈ deps, by Definition 19, ddep((q, p), G) 6= skip . R for some R. That is, since p is
the sender of the exchange, for each q ∈ deps, by the definitions in Figure 5,

Gs � (p, q) = p!r{i . (Gi � (p, q))}i∈I . (4)

On the other hand, for each q ∈ q̃ \ deps \ {r},

Gs � (p, q) = skip . (Gi′ � (p, q)) (5)

for any i′ ∈ I, because for each i, j ∈ I,

Gi � (p, q) = Gj � (p, q). (6)
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Let us take stock of the types we expect for each of the router’s channels.

For µp we expect Gs �
oC p = ⊕oC{i : LSiM⊗oC+1 (Gi �

oC+4 p)}i∈I

= &oC{i : LSiM

&oC+1 (Gi �
oC+4 p)}i∈I . (7)

For pr we expect LGs � (p, q)MoC
p〉r = Lp{i . (Gi � (p, r))}i∈IMoC

p〉r (cf. (3))

= ⊕oC+1{i : LSiM⊗oC+2 LGi � (p, r)MoC+4
p〉r }i∈I .

(8)

For each q ∈ deps,
for pq we expect LGs � (p, q)MoC

p〉q = Lp!r{i. (Gi � (p, q))}i∈IMoC
p〉q (cf. (4))

= ⊕oC+1{i : LGi � (p, q)MoC+4
p〉q }i∈I . (9)

For each q ∈ q̃ \ deps \ {r},
for pq we expect LGs � (p, q)MoC

p〉q = Lskip . (Gi′ � (p, q))MoC
p〉q (cf. (5))

= LGi′ � (p, q)MoC+4
p〉q for any i′ ∈ I. (10)

Let us now consider the process returned by Algorithm 1, with each prefix marked with a
number:

JGsK
q̃
p = µp .

{
i :︸ ︷︷ ︸

1

pr / i︸ ︷︷ ︸
2i

· (pq / i)q∈deps︸ ︷︷ ︸
3i

·µp(v)︸ ︷︷ ︸
4i

. pr[w]︸ ︷︷ ︸
5i

·(v↔ w | JGiKq̃p)
}
i∈I

For each i′ ∈ I, let Ci′ := C[s� r({i〈Si〉 . Gi}i∈I\{i′} ∪ {i′〈Si′〉 . []})]. Clearly, Gi′ ≤Ci′ G.
Also, because we are not adding recursion binders, the current value of q̃ is appropriate for
the IH. With this context Ci′ and q̃, we apply the IH to obtain the typing of JGi′K

q̃
p, where

priorities start at ctxpri(Ci′) = ctxpri(C) + 4 = oC + 4 (cf. Def. 32). Following these typings,
Figure 10 gives the typing of JGsK

q̃
p, referring to parts of the process by the number marking

its foremost prefix above.
Clearly, the priorities in the derivation of Figure 10 meet all requirements. The order of
the applications of ⊕? for each q ∈ deps does not matter, since the selection actions are
asynchronous.

2. If p = r, then p is the recipient (line 6). This case is analogous to the previous one.

3. If p /∈ {r, s} (line 7), then further analysis depends on whether the exchange is a dependency
for p. Let

depons := (s ∈ q̃ ∧ hdep(p, s,G)) (as on line 8), and
deponr := (r ∈ q̃ ∧ hdep(p, r,G)) (as on line 9).

To see what the truths of depons and deponr mean, we follow Definition 19 and the definitions
in Figure 5.

Gs � (p, s) =

{
s!r{i . (Gi � (p, s))}i∈I if depons is true
skip . (Gi′ � (p, s)) for any i′ ∈ I otherwise

(11)

Gs � (p, r) =

{
r?s{i . (Gi � (p, r))}i∈I if deponr is true
skip . (Gi′ � (p, r)) for any i′ ∈ I otherwise

(12)

Let us also consider the relative projections onto p and the participants in q̃ besides r and s,
which follow by the relative well-formedness of Gs. For each q ∈ q̃ \ {r, s},

Gs � (p, q) = skip . (Gi′ � (p, q)) (13)

for any i′ ∈ I.
The rest of the analysis depends on the truth of depons and deponr. There are four cases.
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∀i ∈ I. v↔ w ` v : LSiM, w : LSiM
Id

∀i ∈ I. JGiKq̃p ` µp : (Gi �oC+4 p),
(
pq : LGi � (p, q)M

oC+4
p〉q

)
q∈q̃

∀i ∈ I. v↔ w | JGiKq̃p ` µp : (Gi �oC+4 p), v : LSiM, w : LSiM,(
pq : LGi � (p, q)M

oC+4
p〉q

)
q∈q̃

Mix

∀i ∈ I. 5i ` µp : (Gi �oC+4 p), v : LSiM,
pr : LSiM⊗

oC+2 LGi � (p, r)MoC+4
p〉r ,(

pq : LGi � (p, q)M
oC+4
p〉q

)
q∈q̃\{r}

⊗?

∀i ∈ I. 4i ` µp : LSiM

&oC+1 (Gi �oC+4 p),

pr : LSiM⊗
oC+2 LGi � (p, r)MoC+4

p〉r ,(
pq : LGi � (p, q)M

oC+4
p〉q

)
q∈q̃\{r}

&

∀i ∈ I. 3i ` µp : LSiM

&oC+1 (Gi �oC+4 p),

pr : LSiM⊗
oC+2 LGi � (p, r)MoC+4

p〉r ,(
pq : ⊕

oC+1{i : LGi � (p, q)MoC+4
p〉q }i∈I

)
q∈deps

,(
pq : LGi � (p, q)M

oC+4
p〉q

)
q∈q̃\deps

(⊕?)∗

∀i ∈ I. 2i ` µp : LSiM

&oC+1 (Gi �oC+4 p),

pr : ⊕
oC+1{i : LSiM⊗oC+2 LGi � (p, r)MoC+4

p〉r }i∈I ,(
pq : ⊕

oC+1{i : LGi � (p, q)MoC+4
p〉q }i∈I

)
q∈deps

,(
pq : LGi � (p, q)M

oC+4
p〉q

)
q∈q̃\deps

(cf. (6))

⊕?

JGsKq̃p = 1 ` µp : &oC{i : LSiM

&oC+1 (Gi �oC+4 p)}i∈I , (cf. (7))
pr : ⊕

oC+1{i : LSiM⊗oC+2 LGi � (p, r)MoC+4
p〉r }i∈I , (cf. (8))(

pq : ⊕
oC+1{i : LGi � (p, q)MoC+4

p〉q }i∈I
)
q∈deps

, (cf. (9))(
pq : LGi′ � (p, q)M

oC+4
p〉q

)
q∈q̃\deps

(cf. (10))

&

Figure 10: Typing derivation used in the proof of Theorem 11.

(a) If depons is true and deponr is false (line 10), let us take stock of the types we expect for
each of the router’s channels.

For µp we expect Gs �
oC p = &oC+2{i : (Gi �

oC+4 p)}i∈I

= ⊕oC+2{i : (Gi �
oC+4 p)}i∈I . (14)

For ps we expect LGs � (p, s)MoC
p〉s = Ls!r{i . (Gi � (p, s))}i∈IMoC

p〉s (cf. (11))

= &oC+1{i : LGi � (p, s)MoC+4
p〉s }i∈I . (15)

For each q ∈ q̃ \ {s},
for pq we expect LGs � (p, q)MoC

p〉q = Lskip . (Gi′ � (p, q))MoC
p〉q (cf. (12) and (13))

= LGi′ � (p, q)MoC+4
p〉q for any i′ ∈ I. (16)

Similar to case (1), we apply the IH to obtain the typing of JGiK
q̃
p for each i ∈ I, starting

at priority oC + 4. We derive the typing of JGsK
q̃
p:

∀i ∈ I. JGiKq̃p ` µp : Gi �
oC+4 p,

(
pq : LGi � (p, q)MoC+4

p〉q
)
q∈q̃

∀i ∈ I. µp / i · JGiK
q̃
p ` µp : ⊕oC+2{i : Gi �

oC+4 p}i∈I ,
(
pq : LGi � (p, q)MoC+4

p〉q
)
q∈q̃

⊕?

JGsK
q̃
p = ps . {i : µp / i · JGiK

q̃
p}i∈I ` µp : ⊕oC+2{i : Gi �

oC+4 p}i∈I , (cf. (14))
ps : &oC+1{i : LGi � (p, q)MoC+4

p〉q }i∈I , (cf. (15))(
pq : LG′i � (p, q)MoC+4

p〉q
)
q∈q̃

(cf. (16))

&
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∀i ∈ I.
JGiKq̃p ` µp : Gi �oC+4 p,(

pq : LGi � (p, q)M
oC+4
p〉q

)
q∈q̃

∀i ∈ I.
∀i′ ∈ I \ {i}. alarm(chs) ` µp : Gi �oC+4 p,

ps : LGi � (p, s)M
oC+4
p〉s ,

pr : LGi′ � (p, r)M
oC+4
p〉r ,(

pq : LGi � (p, q)M
oC+4
p〉q

)
q∈q̃\{s,r}

Alarm

∀i ∈ I. pr . {i : JGiK
q̃
p} ∪ {i

′ : alarm(chs)}i′∈I\{i} ` µp : Gi �oC+4 p,

ps : LGi � (p, s)M
oC+4
p〉s ,

pr : &
oC+2{i : LGi′ � (p, r)MoC+4

p〉r }i∈I ,(
pq : LGi � (p, q)M

oC+4
p〉q

)
q∈q̃\{s,r}

&

∀i ∈ I. µp / i · pr . {i : JGiK
q̃
p} ∪ {i

′ : alarm(chs)}i′∈I\{i} ` µp : ⊕oC+2{i : Gi �oC+4 p}i∈I ,
ps : LGi � (p, s)M

oC+4
p〉s ,

pr : &
oC+2{i : LGi′ � (p, r)MoC+4

p〉r }i∈I ,(
pq : LGi � (p, q)M

oC+4
p〉q

)
q∈q̃\{s,r}

⊕?

ps . {i : µp / i · pr . {i : JGiK
q̃
p}

∪ {i′ : alarm(chs)}i′∈I\{i}}i∈I︸ ︷︷ ︸
JGsKq̃p

` µp : ⊕oC+2{i : Gi �oC+4 p}i∈I , (cf. (17))
ps : &

oC+1{i : LGi � (p, s)MoC+4
p〉s }i∈I , (cf. (18))

pr : &
oC+2{i : LGi′ � (p, r)MoC+4

p〉r }i∈I , (cf. (19))(
pq : LGi′ � (p, q)M

oC+4
p〉q

)
q∈q̃\{s,r}

(cf. (20))

&

Figure 11: Typing derivation used in the proof of Theorem 11, where chs = {µp} ∪ {pq | q ∈ q̃}.

(b) The case where depons is false and deponr is true (line 11) is analogous to the previous
one.

(c) If both depons and deponr are true (line 12 and (2)), let us once again take stock of the
types we expect for each of the router’s channels.

For µp we expect Gs �
oC p = &oC+2{i : (Gi �

oC+4 p)}i∈I

= ⊕oC+2{i : (Gi �
oC+4 p)}i∈I (17)

For ps we expect LGs � (p, s)MoC
p〉s = Ls!r{i . (Gi � (p, s))}i∈IMoC

p〉s (cf. (11))

= &oC+1{i : LGi � (p, s)MoC+4
p〉s }i∈I (18)

For pr we expect LGs � (p, r)MoC
p〉r = Lr?s{i . (Gi � (p, r))}i∈IMoC

p〉r (cf. (12))

= &oC+2{i : LGi � (p, r)MoC+4
p〉r }i∈I (19)

For each q ∈ q̃ \ {s, r},
for pq we expect LGs � (p, q)MoC

p〉q = Lskip . (Gi′ � (p, q))MoC
p〉q (cf. (13))

= LGi′ � (p, q)MoC+4
p〉q for any i′ ∈ I (20)

It is clear from (18) and (19) that the router will receive label i ∈ I first on ps and then
i′ ∈ I on pr. We rely on alarm processes (Definition 28) to handle the case i′ 6= i.
Similar to case (1), we apply the IH to obtain the typing of JGiK

q̃
p for each i ∈ I, starting

at priority oC + 4. Figure 11 gives the typing of JGsK
q̃
p.

(d) If both depons and deponr are false, let us again take stock of the types we expect for
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each of the router’s channels.

For µp we expect Gs �
oC p = Gi′ �

oC+4 p for any i′ ∈ I.
For each q ∈ q̃,
for pq we expect LGs � (p, q)MoC

p〉q = Lskip . (Gi′ � (p, q))MoC
p〉q (cf. (11), (12) and (13))

= LGi′ � (p, q)MoC+4
p〉q for any i′ ∈ I.

Similar to case (1), we apply the IH to obtain the typing of JGi′K
q̃
p, starting at priority

oC + 4. This directly proves the thesis.

• Recursive definition: Gs = µZ . G′ (line 14).

Let

q̃′ := {q ∈ q̃ | Gs � (p, q) 6= •} (21)

(as on line 15). We consider the relative projections onto p and the participants in q̃. For each
q ∈ q̃′, we know Gs � (p, q) 6= •, while for each q ∈ q̃ \ q̃′, we know Gs � (p, q) = •. More precisely,
by Definition 17, for each q ∈ q̃′,

Gs � (p, q) = (µZ . G′) � (p, q) = µZ . (G′ � (p, q)). (22)

and thus

G′ � (p, q) 6= skip∗ . • and G′ � (p, q) 6= skip∗ . Z.

For each q ∈ q̃ \ q̃′,

Gs � (p, q) = (µZ . G′) � (p, q) = •, (23)

and thus

G′ � (p, q) = skip∗ . • or G′ � (p, q) = skip∗ . Z.

Further analysis depends on whether q̃′ = ∅ or not. We thus examine two cases:

– If q̃′ = ∅ (line 16), let us consider the local projection Gs �oC p. We prove that Gs �oC p = •.
Suppose, for contradiction, that Gs�oC p 6= •. Then, by the definitions in Figure 7, G′�oC p 6= X
and G′ �oC p 6= •. That is, G′ �oC p contains communication actions or some recursion variable
other than Z. However, communication actions in G′ �oC p originate from exchanges in G′,
either involving p and some q ∈ q̃, or as a dependency on an exchange involving some q ∈ q̃.
Moreover, recursion variables in G′ �oC p originate from recursion variables in G′. But this
would mean that for this q, G′�(p, q) contains interactions or recursion variables, contradicting
(23). Therefore, it cannot be the case that Gs �oC p 6= •.
Let us take stock of the types we expect for each of the router’s channels. For now, we omit
the substitutions in the types.

For µp we expect Gs �
oC p = • = •.

For each q ∈ q̃, for pq we expect LGs � (p, q)MoC
p〉q = L • MoC

p〉q = •. (cf. (23))

Because all expected types are •, the substitutions do not affect the types, so we can omit
them altogether.
First we apply Empty, giving us an arbitrary recursive context, and thus the recursive context
we need. Then, we apply • for µp and for pq for each q ∈ q̃, and obtain the typing of JGsK

q̃
p

(omitting the recursive context):

JGsK
q̃
p = 0 ` µp : •, (pq : •)

q∈q̃
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– If q̃′ 6= ∅ (line 17), then, following similar reasoning as in the previous case,
Gs �

oC p = µZ . (G′ �oC p). We take stock of the types we expect for each of the router’s
channels. Note that, because of the recursive definition on Z in Gs, there cannot be an-
other recursive definition in the context C capturing the recursion variable Z. Therefore, by
Definition 30, Z /∈ X̃C .

For µp we expect deepUnfold(Gs �
oC p, . . .)

= deepUnfold(µZ . (G′ �oC p), . . .)

= deepUnfold(µZ . G′ �oC p, . . .)

= µZ . deepUnfold(G′ �oC p, (X, tX , GX �
oX p)

X∈X̃C ). (24)

For each q ∈ q̃′,
for pq we expect deepUnfold(LGs � (p, q)MoC

p〉q, . . .)

= deepUnfold(LµZ . (G′ � (p, q))MoC
p〉q, . . .)

= deepUnfold(µZ . LG′ � (p, q)MoC
p〉q, . . .) (cf. (22))

= µZ . deepUnfold(LG′ � (p, q)MoC
p〉q, (X, tX , LGX � (p, q)MoX

p〉q)X∈X̃C
).

(25)

For each q ∈ q̃ \ q̃′,
for pq we expect deepUnfold(LGs � (p, q)MoC

p〉q, . . .)

= deepUnfold(L • MoC
p〉q, . . .)

= deepUnfold(•, . . .) (cf. (23))
= •. (26)

We also need an assignment in the recursive context for every X ∈ X̃C , but not for Z.
Let C ′ = C[µZ . []]. Clearly, G′ ≤C′ G. Let us first establish some facts about the recursion
binders, priorities, and active participants related to C ′, G′, and Z:

∗ X̃C′ = ctxbind(C ′) = (ctxbind(C), Z) = (X̃C , Z) (cf. Def. 30).
∗ GZ = recdef(Z,G) = G′, as proven by the context C ′ (cf. Def. 31).
∗ ỸZ = subbind(µZ . GZ , G) = ctxbind(C) = X̃C .
∗ oC′ = ctxpri(C ′) = ctxpri(C) = oC , and oZ = varpri(Z,G) = ctxpri(C) = oC , and hence
oC′ = oZ (cf. Def. 32).

∗ q̃Z = q̃′ (cf. Def. 33 and (21)).

Because X̃C′ = (X̃C , Z) and q̃′ = q̃Z , q̃′ is appropriate for the IH. We apply the IH on C ′, G′,
and q̃′ to obtain a typing for JG′Kq̃

′

p , where we immediately make use of the facts established
above. We give the assignment to Z in the recursive context separate from those for the
recursion variables in X̃C . Also, by Proposition 15, we can write the final unfolding on Z in
the types separately. For example, the type for µp is

deepUnfold(G′ �oC′ p, (X, tX , GX �
oX p)

X∈X̃C′
)

= deepUnfold(G′ �oC p, (X, tX , GX �
oX p)

X∈(X̃C ,Z)
)

= deepUnfold(G′ �oC p,
(
(X, tX , GX �

oX p)
X∈X̃C , (Z, tZ , GZ �

oZ p)
)
)

= deepUnfold(G′ �oC p,
(
(X, tX , GX �

oX p)
X∈X̃C , (Z, tZ , G

′ �oC p)
)
)

= unfoldtZ
(
µZ . deepUnfold(G′ �oC p, (X, tX , GX �

oX p)
X∈X̃C )

)
.
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The resulting typing is as follows:

JG′Kq̃
′

p `

X :

deepUnfold(GX �
oX p, (Y, tY , GY �

oY p)
Y ∈ỸX ),(

deepUnfold(LGX � (p, q)MoX
p〉q, (Y, tY , LGY � (p, q)MoY

p〉q)Y ∈ỸX
)
)
q∈q̃X


X∈X̃C

,

Z :

deepUnfold(G′ �oC p, (X, tX , GX �
oX p)

X∈X̃C ),(
deepUnfold(LG′ � (p, q)MoC

p〉q, (X, tX , LGX � (p, q)MoX
p〉q)X∈X̃C

)
)
q∈q̃′

 ;

µp : unfoldtZ
(
µZ . deepUnfold(G′ �oC p, (X, tX , GX �

oX p)
X∈X̃C )

)
,(

pq : unfoldtZ
(
µZ . deepUnfold(LG′ � (p, q)MoC

p〉q, (X, tX , LGX � (p, q)MoX
p〉q)X∈X̃C

)
))
q∈q̃′

By assumption, we have

tZ = max
pr

deepUnfold(G′ �oC p, (X, tX , GX �
oX p)

X∈X̃C )(
deepUnfold(LG′ � (p, q)MoC

p〉q, (X, tX , LGX � (p, q)MoX
p〉q)X∈X̃C

)
)
q∈q̃′

+ 1,

so tZ is clearly greater than the maximum priority appearing in the types before unfolding.
Hence, we can apply Rec to eliminate Z from the recursive context, and to fold the types,
giving the typing of JGsK

q̃
p = µZ(µp, (pq)q∈q̃′) . JG

′Kq̃
′

p :

JGsK
q̃
p `

X :

deepUnfold(GX �
oX p, (Y, tY , GY �

oY p)
Y ∈ỸX ),(

deepUnfold(LGX � (p, q)MoX
p〉q, (Y, tY , LGY � (p, q)MoY

p〉q)Y ∈ỸX
)
)
q∈q̃X


X∈X̃C

;

µp : µZ . deepUnfold(G′ �oC p, (X, tX , GX �
oX p)

X∈X̃C ),(
pq : µZ . deepUnfold(LG′ � (p, q)MoC

p〉q, (X, tX , LGX � (p, q)MoX
p〉q)X∈X̃C

)
)
q∈q̃′

In this typing, the type for µp concurs with (24), and, for every q ∈ q̃′, the type for pq concurs
with (25). For every q ∈ q̃ \ q̃′, we can add the type for pq in (26) by applying •. This proves
the thesis.

• Recursive call : Gs = Z (line 18).

Clearly, because G is closed (i.e. frv(G) = ∅), Z ∈ X̃C . More precisely, X̃C = (X̃1, Z, X̃2).

Note that the recursive definitions on the variables in X̃1 appear in G after the recursive definitions
on the variables in (Z, X̃2). Because the unfoldings of (Z, X̃2) occur before the unfoldings of X̃1,
the recursive definitions on the variables in X̃1 are renamed in order to avoid capturing these
variables when performing the unfoldings of (Z, X̃2). So, after the unfoldings of (Z, X̃2), there are
no recursive calls on the variables in X̃1 anymore, so the unfoldings on X̃1 do not have any effect
on the types.

Also, note that X̃2 = ỸZ (cf. Def. 30).
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Let us take stock of the types we expect for our router’s channels.

For µp we expect deepUnfold(Gs �
oC p, . . .)

= deepUnfold(Z �oC p, . . .)

= deepUnfold(Z, . . .)

= deepUnfold(Z, (X, tX , GX �
oX p)

X∈(X̃1,Z,ỸZ)
)

= deepUnfold(Z, (X, tX , GX �
oX p)

X∈(Z,ỸZ)
)

= µZ . (↑tZdeepUnfold(GZ �
oZ p, (X, tX , GX �

oX p)
X∈ỸZ )) (27)

For each q ∈ q̃,
for pq we expect deepUnfold(LGs � (p, q)MoC

p〉q, . . .)

= deepUnfold(LZMoC
p〉q, . . .)

= deepUnfold(Z, (X, tX , LGX � (p, q)MoX
p〉q)X∈(X̃1,Z,ỸZ)

)

= deepUnfold(Z, (X, tX , LGX � (p, q)MoX
p〉q)X∈(Z,ỸZ)

)

= µZ . (↑tZdeepUnfold(LGZ � (p, q)MoZ
p〉q, (X, tX , LGX � (p, q)MoX

p〉q)X∈ỸZ
)) (28)

Also, we need an assignment in the recursive context for every X ∈ X̃C . By Lemma 13, q̃ = q̃Z .
Hence, for Z, the assignment should be as follows:

Z :

deepUnfold(GZ �
oZ p, (X, tX , GX �

oX p)
X∈ỸZ ),(

deepUnfold(LGZ � (p, q)MoZ
p〉q, (X, tX , LGX � (p, q)MoX

p〉q)X∈ỸZ
)
)
q∈q̃

 (29)

We apply Var to obtain the typing of JGsK
p
q̃ , where we make us the rule’s allowance for an arbitrary

recursive context up to the assignment to Z. Var is applicable, because the types are recursive
definitions on Z, concurring with the types assigned to Z, and lifted by a common lifter tZ .

JGsK
p
q̃ = X〈µp, (pq)q∈q̃〉

`

X :

deepUnfold(GX �
oX p, (Y, tY , GY �

oY p)
Y ∈ỸX ),(

deepUnfold(LGX � (p, q)MoX
p〉q, (Y, tY , LGY � (p, q)MoY

p〉q)Y ∈ỸX
)
)
q∈q̃X


X∈X̃C\(Z)

,

Z :

deepUnfold(GZ �
oZ p, (X, tX , GX �

oX p)
X∈ỸZ ),(

deepUnfold(LGZ � (p, q)MoZ
p〉q, (X, tX , LGX � (p, q)MoX

p〉q)X∈ỸZ
)
)
q∈q̃

 ;

µp : µZ . (↑tZdeepUnfold(GZ �
oZ p, (X, tX , GX �

oX p)
X∈ỸZ )),(

pq : µZ . (↑tZdeepUnfold(LGZ � (p, q)MoZ
p〉q, (X, tX , LGX � (p, q)MoX

p〉q)X∈ỸZ
))
)
q∈q̃

Var

In this typing, the type of µp concurs with the expected type in (27), the types of pq for each q ∈ q̃
concur with the expected types in (28), and the assignment to Z in the recursive context concurs
with (29). This proves the thesis.

Now, we can prove Theorem 11 as a corollary of Theorem 16:

Proof of Theorem 11 on Page 24. We have been given a closed, relative well-formed global type G,
and a participant p ∈ prt(G). Let C := [] and Gs := G. Clearly, Gs ≤C G. By Definition 33,
active(C,G) = prt(G)

2. For p to be a participant of G, there must be an exchange involving p and some
other participant q, i.e. there exists a q ∈ prt(G) such that (p, q) ∈ active(C,G). Moreover, q̃ as defined
in Theorem 16 is {q ∈ prt(G) | (p, q) ∈ active(C,G)} = q ∈ prt(G) \ {p}. Hence, Theorem 16 allows us
to find a typing for JGKprt(G)\{p}

p .
Let us consider the precise values of the ingredients of Theorem 16 in our application:
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1. oC = ctxpri(C) = 0,

2. X̃C = ctxbind(C) = (),

3. Dp = deepUnfold(Gs �
oC p, (X, tX , Gx �

oX p)
X∈X̃C )

= G �0 p (cf. Definition 34),

4. Eq = deepUnfold(LGs � (p, q)MoC
p〉q, (X, tX , LGX � (p, q)MoX

p〉q)X∈X̃C
)

= LG � (p, q)M0p〉q (cf. Definition 34).

Finally, the result of Theorem 16 is as follows:

JGsK
q̃
p `

(
X :

(
AX , (BX,q)q∈q̃X

))
X∈X̃C

; µp : Dp, (pq : Eq)q∈q̃

Applying (1)–(4) above, we get the following:

JGKprt(G)\{p}
p ` ∅; µp : G �0 p,

(
pq : LG � (p, q)M0p〉q

)
q∈prt(G)\{p}

This coincides exactly with the result of Theorem 11.

4.3.2 Transference of Results (Operational Correspondence)

Given a global type G, we now formalize the transference of correctness properties such as deadlock-
freedom from net(G) (cf. Definition 26) to G. Here, we define an operational correspondence between
networks and global types, in both directions. That is, we show that a network performs interactions
between implementations and routers and between pairs of routers if and only if that communication
step is stipulated in the corresponding global type (Theorems 19 and 23).

Before formalizing the operational correspondence, we show that networks of routed implementations
never reduce to alarm processes. To be precise, because alarm processes only can occur in routers (not in
implementations), we show that none of the routers of a network reduces to an alarm process, formalized
using evaluation contexts (Def. 8):

Theorem 17. Given a relative well-formed global type G and a network of routed implementations
N ∈ net(G), then

N 6−→∗ E [alarm(x̃)],

for any reduction context E and set of endpoints x̃.

Proof. By definition (Definition 26), N consists only of routers (Definition 20) and well-typed processes
not containing the alarm process (cf. the assumption below Definition 28).

Suppose, for contradiction, that there are E and x̃ such that N −→∗ E [alarm(x̃)]. Since only routers
can contain the alarm process, there is a router Rp in N for participant p ∈ prt(G) that reduces to the
alarm process. Since it is the only possibility for a router synthesized by Algorithm 1 to contain the
alarm process, it must contain the process in (2). This process is synthesized on line 12 of Algorithm 1, so
there is an exchange in G with sender s ∈ prt(G)\{p} and recipient r ∈ prt(G)\{p} that is a dependency
for the interactions of p with both s and r.

For this exchange, the router Rs for s contains the process returned on line 5 of Algorithm 1, and
the router Rr for r contains the process returned on line 6. Suppose s has a choice between the labels
in I, and the implementation of s chooses i ∈ I. Then, Rs sends i to Rr and Rp.

Now, for Rp to reduce to the alarm process, it has to receive from Rr a label i′ ∈ I\{i}. However, this
contradicts line 6 of Algorithm 1, which clearly definesRr to send i toRp. Hence, N 6−→∗ E [alarm(x̃)].

It follows from this and the typability of routers (Theorem 11) that networks of routed implementa-
tions are deadlock-free:

Theorem 18. For relative well-formed global type G, every N ∈ net(G) is deadlock-free.

Proof. By the typability of routers (Theorem 11) and the duality of the types of router channels (Theo-
rem 9), N ` ∅; ∅. Hence, by Theorem 5, N is deadlock-free, and by Theorem 17, N never reduces to the
alarm process.
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To formalize our operational correspondence result, we apply the labeled reductions for processes
P

α−⇁Q (cf. Definition 10) and define a labeled transition system (LTS) for global types.

Definition 35 (LTS for Global Types). We define the relation G
α−→ G′, with labels β of the form

p〉q : `〈S〉 (sender, recipient, label, and message type), by the following rules:

j ∈ I

p� q{i〈Si〉 . Gi}i∈I
p〉q:j〈Sj〉−−−−−−→ Gj

G
α−→ G′

skip . G
α−→ G′

G{µX . G/X} α−→ G′

µX . G
α−→ G′

Intuitively, operational correspondence states:

1. every transition of a global type is mimicked by a precise sequence of labeled reductions originating
from an associated completable network (completeness; Theorem 19), and

2. for every labeled reduction originated in a completable network there is a corresponding global
type transition (soundness; Theorem 23).

We write ρ1ρ2 for the composition of relations ρ1 and ρ2. Recall that the notation −→? stands for finite
sequences of reductions, as defined in Notation 2.

Theorem 19 (Operational Correspondence: Completeness). Suppose given a relative well-formed global

type G. Also, suppose given p, q ∈ prt(G) and a set of labels J such that j ∈ J if and only if G
p〉q:j〈Sj〉−−−−−−→ Gj

for some Sj. Then,

1. for any completable N ∈ net(G), there exists a j′ ∈ J such that N� −→?
pµ〉µp:j

′

−−−−−⇁N0;

2. for any j′ ∈ J , there exists a completable N ∈ net(G) such that N� −→?
pµ〉µp:j

′

−−−−−⇁N0;

3. for any completable N ∈ net(G) and any j′ ∈ J , if N� −→?
pµ〉µp:j

′

−−−−−⇁N0, then there exists a
completable Nj′ ∈ net(Gj′) such that,

N0

pq〉qp:j
′

−−−−−⇁ −→? µq〉qµ:j
′

−−−−−⇁ −→? pµ〉µp:v−−−−−⇁
pq〉qp:w−−−−−⇁ v↔w−−−⇁ −→? µq〉qµ:w−−−−−⇁ v↔w−−−⇁ N�

j′ .

Proof. By the labelled transitions of global types (Def. 35) and relative well-formedness, G is a sequence
of skips followed by an exchange from p to q over the labels in J . Since the skips do not influence the
behavior of routers, let us assume simply that

G = p� q{j〈Sj〉 . Gj}j∈J .

We prove each Sub-item separately.

(a) Take any completable N ∈ net(G). By definition (Def. 27), N� ` ∅; ∅. By the construction of
networks of routed implementations (Def. 26), pµ ∈ bn(N�), and pµ is connected to µp.

Also by construction, the type of pµ in the typing derivation of N� is

G �0 p = ⊕0{j : LSjM⊗1 (Gj �
4 p)})j∈J .

By the well-typedness of N�, we can infer the kind of action that is defined on pµ: a selection, or
a forwarder. By induction on the number of connected forwarders (which is finite by the finiteness
of process terms), eventually a forwarder has to be connected to a selection. So, after reducing the
forwarders, we have a selection on pµ, of some j′ ∈ J .
Hence, by Fairness (Theorem 7), after a finite number of steps, we can observe a communication

of the label j′ from pµ to µp. This proves the thesis: N� −→?
pµ〉µp:j

′

−−−−−⇁N0.
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(b) Following the proof of the existence of completable networks (Proposition 10), we can generate
an implementation process for all of G’s participants from local projections (cf. Proposition 1).
Take any j′ ∈ J . For the implementation process of p, we specifically generate an implementa-
tion process that sends the label j′. These implementation processes allow us to construct N ,
which by construction is in net(G) and is completable. Following the reasoning as in Subitem (a),

N� −→?
pµ〉µp:j

′

−−−−−⇁N0.

(c) By definition (Def. 27), N� ` ∅; ∅. Hence, by Fairness (Theorem 7), for any of the pending names
of N�, we can observe a communication after a finite number of steps. By construction (Def. 26),
the endpoints that we are required to observe by thesis are bound in N�. From the shape of G,
the definition of routed implementations (Def. 25), and the typability of routers (Theorem 11), we
know the types of all the required endpoints in N�. We can deduce the required labeled reductions
following the reasoning as in Subitem (a). Let us summarize the origin of each of the network’s
steps:

1. N� −→?
pµ〉µp:j

′

−−−−−⇁N0: The implementation of p selects label j′ with p’s router.

2. N0

pq〉qp:j
′

−−−−−⇁N1: The router of p forwards j′ to q’s router.

3. N1 −→? N2: The router of p forwards j′ to the routers of the participant that depend on the
output by p, and these routers forward j′ to their respective implementations.

4. N2

µq〉qµ:j
′

−−−−−⇁ −→? N3: The router of q forwards j′ to q’s implementation, and to the routers of
the participants that depend on the input by q, and these routers forward j′ to their respective
implementation (if they have not done so already for the output dependency on p).

5. N3

pµ〉µp:v−−−−−⇁
pq〉qp:w−−−−−⇁ v↔w−−−⇁ N4,v: The implementation of p sends an endpoint v to p’s router,

which sends a fresh endpoint w to q’s router, and v is forwarded to w.

6. N4,v −→?
µq〉qµ:w−−−−−⇁ v↔w−−−⇁N�

j′ : The router of q sends a fresh endpoint w to q’s implementations,
and v is forwarded to w.
In N�

j′ , all routers have transitioned to routers for Gj′ . Moreover, by Type Preservation (The-
orem 2), N�

j′ ` ∅; ∅. By isolating restrictions on endpoints that belong only to implementation
processes, we can find Nj′ ∈ net(Gj′) such that N�

j′ is its completion. This proves the thesis.

Note that G can also contain recursive definitions before the initial exchange; this case can be dealt
with by unfolding.

Our soundness result, given below as Theorem 23, will capture the notion that after any sequence
of reductions from the network of a global type G, a network of another global type G′ can be reached.
Crucially, G′ can be reached from G through a series of transitions. Networks are inherently concurrent,
whereas global types are built out of sequential compositions; as a result, the network could have enabled
(asynchronous) actions that correspond to exchanges that are not immediately enabled in the global type.

For example, consider the global types G = a� b
{

1〈S1〉.c� d{1〈S′〉.end}, 2〈S2〉.c� d{1〈S′〉.end}
}

and G′ = a� b
{

1〈S〉.b� c{1〈S′〉.end}
}
. Clearly, the initial exchange in G between a and b is not a

dependency for the following exchange between c and d. The routers of c and d synthesized from G thus
start with their exchange, without awaiting the initial exchange between a and b to complete. Hence,
in a network of G, both exchanges in G may be enabled simultaneously. We further refer to exchanges
that may be simultaneously enabled in networks as independent (global) exchanges. While all exchanges
appearing in G are independent, the two exchanges in G′ are not.

In the proof of soundness, we may encounter in a network reductions related to independent exchanges,
so we have to be able to identify the independent exchanges in the global type to which the network
belongs. Lemma 21 states that independent exchanges related to observed reductions in a network of a
global type G can be reached from G after any sequence of transitions in a finite number of steps. The
proof of this lemma relies on Lemma 20, which ensures that if a participant does not depend on a certain
exchange, then the routers synthesized at each of the branches of the exchange are equal.

39



Lemma 20. Suppose given a relative well-formed global type G = s� r{i〈Si〉.Gi}i∈I , and take any
p ∈ prt(G) \ {s, r} and q̃ ⊆ prt(G)\{p}. If neither hdep(p, s,G) nor hdep(p, r,G) holds, then JGiK

q̃
p = JGjK

q̃
p

for every i, j ∈ I.

Proof. The analysis proceeds by cases on the structure of G. As a representative case we consider
G = s� r{1〈S1〉.G1, 2〈S2〉.G2}. Towards a contradiction, we assume JG1K

q̃
p 6= JG2K

q̃
p. There are many

cases where Algorithm 1 generates differents routers for p at G1 and at G2. We discuss the interesting
case where JG1K

q̃
p = µp . . . . (line 5) and JG2K

q̃
p = pq2 . . . . (line 6). Then G1 = p � q1{. . .} and

G2 = q2 � p{. . .}. We have G1 � (p, q1) = p{. . .} and G2 � (p, q1) = skip . . . or G2 � (p, q1) = p?q2{. . .}
(w.l.o.g., assume the former). Since G is relative well-formed, the projection G�(p, q1) must exist. Hence,
since p /∈ {s, r} and G1 � (p, q1) 6= G2 � (p, q1), it must be the case that q1 ∈ {s, r}—w.l.o.g., assume
q1 = s. Then G � (p, q1) = q1!r{1.p{. . .}, 2.skip . . .}, and thus hdep(p, q1, G) = hdep(p, s,G) is true. This
contradicts the assumption that hdep(p, s,G) is false.

Lemma 21. Suppose given a relative well-formed global type G and a completable N ∈ net(G) such

that N� cµ〉µc:`−−−−⇁, for some c ∈ prt(G). For every G′ and β1, . . . , βn (n ≥ 0) such that G β1−→ . . .
βn−−→ G′

where c is not involved in any βk (with G = G′ if n = 0), there exist G′′, d ∈ prt(G), and β′1, . . . , β′m
(m ≥ 0) such that G′

β′1−→ . . .
β′m−−→ G′′ = c� d{i〈Si〉.Gi}i∈I where c is not involved in any β′k (with

G′′ = c� d{i〈Si〉.Gi}i∈I if m = 0).

Proof. By induction on n (IH1). We first observe that the behavior on µc in N� can only arise from the
router generated for c at G, following Algorithm 1 (line 5) after finitely many passes through lines 13
(no dependency) and 19 (skip); for simplicity, assume only line 13 applies.

• Case n = 0. Let x ≥ 0 denote the number of passes through line 13 to generate the router for c
at G. We apply induction on x (IH2):

– Case x = 0. The router for c at G is generated through line 5, so G = c� d{i〈Si〉.Gi}i∈I ,
proving the thesis.

– Case x = x′ + 1. Then G = a� b{i〈Si〉.Gi}i∈I and line 13 returns the router for c at Gj for

any j ∈ I. We have G
a〉b:j〈Sj〉−−−−−−→ Gj . Given the same implementation process for c as in N , we

can construct a completable M ∈ net(Gj) such that M� cµ〉µc:`−−−−⇁. Hence, the thesis follows
from IH2.

• Case n = n′ + 1. By assumption, G β1−→ G′1 where c is not the sender or recipient in β1. Hence,
G = a� b{i.〈Si〉.Gi}i∈I where G′1 = Gj for some j ∈ I. The router for c at G is thus generated
through line 13 of Algorithm 1. It follows from Lemma 20 that this router is equal to the router
for c at G′1, but with one less pass through line 13. Given the same implementation process for c

as in N , we can construct a completable M ∈ net(G′1) such that M� cµ〉µc:`−−−−⇁. Hence, the thesis
follows from IH1.

The proof of soundness relies on Proposition 22: if different reductions are enabled for a given process,
then they do not exclude each other. That is, the same process is reached no matter the order in which
those reductions are executed. We refer to simultaneously enabled reductions as independent reductions.

Proposition 22 (Independent Reductions). Suppose given a process P ` Ω; Γ and reduction labels α

and α′1, . . . , α′n (n ≥ 1) where α /∈ {α′1, . . . , α′n} (cf. Definition 10). If P α−⇁ and P
α′1−⇁. . .

α′n−−⇁, then there

exists a process Q such that P α−⇁ α′1−⇁. . .
α′n−−⇁Q and P

α′1−⇁ . . .
α′n−−⇁ α−⇁ Q.

Proof. By induction on n:

• n = 1. By assumption, P α−⇁ and P
α′1−⇁. The proof proceeds by considering all possible combinations

of shapes for α and α′1 (forwarder, output/input, and selection/branching).

Consider the case where α = x〉y : a and α′1 = w〉z : b. Because P is well-typed, we infer that there
are evaluation contexts E1 and E2 such that P ≡ E1[(νxy)(x[a, c] |y(a, c).P1)] ≡ E2[(νwz)(w[b, d] |
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z(b, d).P2]) (Definition 8). Since the reductions labeled α and α′1 are both enabled in P , it cannot
be the case that x, y ∈ fn(P2) and w, z ∈ fn(P1). Hence, there exists an evaluation context E3

such that P ≡ E3[(νxy)(x[a, c] | y(a, c).P1) | (νwz)(w[b, d] | z(b, d).P2]). Then P α−⇁Q1 ≡ E3[P1 |

(νwz)(w[b, d] | z(b, d).P2]) and P
α′1−⇁Q2 ≡ E3[(νxy)(x[a, c] | y(a, c).P1) | P2]. Let Q = E3[P1 | P2];

then Q1
α′1−⇁Q and Q2

α−⇁Q. Hence, P α−⇁ α′1−⇁Q and P
α′1−⇁ α−⇁Q.

All other cases proceed similarly. Note that when one of the reductions (say, α) has a selec-
tion/branching label, such a reduction would discard some branches and thus possible behaviors.
This is not an issue for establishing the thesis, because typability guarantees that the sub-process
that enables the α′-labeled reduction does not appear under the to-be-discarded branches. Hence,
the execution of α will not jeopardize the α′-labeled reduction.

• n = n′+ 1 for n′ ≥ 1. By the IH, P α−⇁ α′1−⇁. . .
α′
n′−−⇁Q′1 and P

α′1−⇁. . .
α′
n′−−⇁P ′

α−⇁Q′1. By assumption,

P ′
α′n−−⇁ Q′2. Since P is well-typed, by Theorem 2 (Subject Reduction), P ′ is well-typed. Since

P ′
α−⇁Q′1 and P ′

α′n−−⇁Q′2, we can follow the same argumentation as in the base case to show that

Q′1
α′n−−⇁Q and Q′2

α−⇁Q. Hence, P α−⇁ α′1−⇁. . .
α′
n′−−⇁Q′1

α′n−−⇁Q and P
α′1−⇁ . . .

α′
n′−−⇁P ′

α′n−−⇁Q′2
α−⇁Q.

To understand the proof of soundness and the rôle of independent reductions therein, consider the
following example. We first introduce some notation which we also use in the proof of soundness: given
an ordered sequence of reduction labels A = (α1, . . . , αk), we write P A−⇁Q to denote P α1−⇁ . . .

αk−−⇁Q.

Example 9. The recursive global type G = µX.a� b : 1〈S〉.c� d : 1〈S〉.X features two independent
exchanges. Consider a network N ∈ net(G). Let A denote the sequence of labeled reductions necessary
to complete the exchange in G between a and b, and C similarly for the exchange between c and d.
Assuming that communication with routers is not blocked by implementation processes, we have N� A−⇁
and N� C−⇁, because the exchanges are independent.

Now, suppose that from N� we observe m times the sequence of C reductions: N� C−⇁. . .
C−⇁︸ ︷︷ ︸

m times

N ′.

We see that N ′ is not a network of a global type reachable from G: there are still m exchanges between
a and b pending. Still, we can exhibit a series of transitions from G that includes m times the exchange
between c and d:

G
a〉b:1〈S〉−−−−−→ c〉d:1〈S〉−−−−−→ . . .

a〉b:1〈S〉−−−−−→ c〉d:1〈S〉−−−−−→︸ ︷︷ ︸
m times

G

Following these transitions, we can exhibit a corresponding sequence of reductions from N� that includes
m times the sequence C and ends up in another networkM∈ net(G):

N� A−⇁ C−⇁ . . .
A−⇁ C−⇁︸ ︷︷ ︸

m times

M�

At this point it is crucial that from N� the sequences of reductions A and C can be performed indepen-
dently. Hence, by Proposition 22, N� C−⇁. . .

C−⇁︸ ︷︷ ︸
m times

N ′
A−⇁. . .

A−⇁︸ ︷︷ ︸
m times

M�.

In the proof of soundness, whenever we assure that certain reductions are independent, we refer to
those assurances as independence facts (IFacts). Also, in the proof we consider labeled reductions, and
distinguish between protocol and implementation reductions: the former are reductions with labels that
indicate any interaction with a router, and the latter are any other reductions (which, by the definition
of networks, can only occur within participant implementation processes). By a slight abuse of notation,
given ordered sequences of reduction labels A and A′, we write A′ ⊆ A to denote that A′ is a subsequence
of A, where the labels in A′ appear in the same order in A but not necessarily in sequence (and similarly
for A′ ⊂ A). With A \A′ we denote the sequence obtained from A by removing all the labels in A′, and
A ∪A′ denotes the sequence obtained by adding the labels from A′ to the end of A.

Theorem 23 (Operational Correspondence: Soundness). Suppose given a relative well-formed global type
G and a completable N ∈ net(G). For every ordered sequence of k ≥ 0 reduction labels A = (α1, . . . , αk)
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and N ′ such that N� A−⇁N ′, there exist G′ and β1, . . . , βn (with n ≥ 0) such that (i) G β1−→ . . .
βn−−→ G′

and (ii) N ′ −→∗M�, withM∈ net(G′).

Proof. By induction on the structure of G; we detail the interesting cases of labeled exchanges with
implicitly unfolded recursive definitions. We exhibit transitions G β1−→ . . .

βn−−→ G′ and establish a cor-
responding sequence of reductions N� −→∗ M� that includes all the labels in A, with M ∈ net(G′).
During this step, we assure the independence between the observed reductions A and the reductions we
establish (IFacts). Using these independence assurances, we show that also N ′ −→∗M�.

We apply induction on the size of A (IH1) to show the existence of (i) G′ and β1, . . . , βn such that
(i) G β1−→ . . .

βn−−→ G′ and (ii) N� −→∗M� including all reductions in A, withM∈ net(G′):

• Base case: then A is empty, and the thesis holds trivially, with G′ = G andM = N .

• Inductive case: then A is non-empty.

By the definition of networks (Definition 26), we know that reductions starting at N� are protocol
reductions related to an independent exchange in G, or implementation reductions. Every protocol
reduction in A is related to some exchange in G, and so we can group sequences of protocol reduc-
tions related to the same exchange. By construction, every such sequence of protocol reductions
A∗ ⊆ A starts with an implementation sending a label to a router, i.e., with a label of the form
α∗ = cµ〉µc : `. For each such α∗, the router in N of the sender c has been synthesized from G in
a finite number of inductive steps. We take the α∗ that originates from the router synthesized in
the least number of steps. This gives us the A∗ starting with α∗ that relates to an exchange in G
which is not prefixed by exchanges relating to any of the other A′∗ ⊆ A \A∗.
Networks are well-typed by definition. None of the reductions in A∗ are blocked by protocol
reductions appearing earlier in A (IFact 1): they originate from exchanges in G appearing after
the exchange related to A∗, and the priorities in their related types are thus higher than those in
the types related to A∗, i.e., blocking by input or branching would contradict the well-typedness
of N�. However, it may be that some implementation reductions A+ ⊆ A \ A∗ do block the
reductions in A∗; they are also not blocked by any prior protocol reductions due to priorities
(IFact 2). Hence, from N� we can perform the implementation reductions in A+. By Subject
Reduction (Theorem 2), this results in another completed network N�

0 of G. This establishes the

reduction sequence N� A+−−⇁N�
0

A∗−−⇁.

By Lemma 21, there are m ≥ 0 transitions G β1−→ G1 . . .
βm−−→ Gm where the initial prefix of Gm

corresponds to the labeled choice by the implementation of c: Gm = c� d{i〈Si〉.G′i}i∈I , with
` ∈ I. Additionally, Gm contains exchanges related to every sequence of protocol reductions in
A \ A+ \ A∗: all these sequences start with a selection from implementation to router, and thus
the involved participants do not depend on any of the exchanges between G and Gm, such that
Lemma 20 applies. To establish a sequence of reductions from N�

0 to the completion of a network
Nm ∈ net(Gm), we apply induction on m (IH2):

– The base case where m = 0 is trivial, with Gm = G and thus N�
m = N�

0 .

– In the inductive case, following the same approach as in the proof of completeness (Theo-
rem 19), we reduce N�

0 −→∗ N
�
1 such that N1 ∈ net(G1). Then, by IH2, N�

1 −→∗ N�
m

where Nm ∈ net(Gm). Note that these reductions may require implementation reductions to
unblock protocol reductions, and these implementation reductions may appear in A. None of
the reductions from N�

0 to N�
m can be blocked by any of the other protocol reductions in A,

following again from priorities in types; hence, the leftover reductions in A are independent
from these reductions (IFact 3). Additionally, the sequence of protocol reductions A∗ was
already enabled from N�

0 , so those reductions are also independent (IFact 4).

We know that N�
m

cµ〉µc:`−−−−⇁ and Gm
c〉d:`〈S`〉−−−−−−→ G′`. From N�

m , we again follow the proof of complete-
ness to show that N�

m −→∗M�
` , whereM` ∈ net(G′`). Given the definition of routers, it must be

that all the reductions in A∗ appear in this sequence of reductions. Let A′ ⊂ A denote the leftover
reductions from A (i.e., A except all reductions that occurred between N� and M�

` , including
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A∗ and A+). By IFacts 1–4, M�
`

A′−⇁M ′. Then by IH1, there exist G′ and βm+2, . . . , βn (with

n ≥ m+ 1) such that (i) G′`
βm+2−−−→ . . .

βn−−→ G′ and (ii)M�
` −→∗M� including all reductions in A′,

withM∈ net(G′). Let βm+1 = c〉d : `〈S`〉. We have shown the existence of G′ and β1, . . . , βn such

that (i) G β1−→ . . .
βm−−→ Gm

βm+1−−−→ G′`
βm+2−−−→ . . .

βn−−→ G′ and (ii) N� −→∗ N�
m −→∗ M�

` −→∗ M�

including all reductions in A, withM∈ net(G′).

We are left to show that from N� −→∗M� and N� A−⇁N ′, we can conclude that N ′ −→∗M�. We
apply induction on the size of A (IH3), using IFacts 1–4 and Proposition 22:

• Base case: Then A is empty, there is nothing to do, and the thesis is proven.

• Inductive case: Then A = A′ ∪ (α′). By IH3, N� A′−⇁N ′′ −→∗ N ′′′ α
′

−⇁ −→∗ M�. Moreover, by

assumption, N ′′ α
′

−⇁N ′. IFacts 1–4 show that the α′-labeled reduction is independent from the
reductions between N ′′ and N ′′′. Hence, by Proposition 22, we have N� A′−⇁N ′′

α′−⇁N ′ −→∗M�.
That is, N� A−⇁N ′ −→∗M�, proving the thesis.

In the light of Theorem 23, let us revisit Example 9:

Example 10 (Revisiting Example 9). Recall the global type G = µX.a� b : 1〈S〉.c� d : 1〈S〉.X from
Example 9, with two independent exchanges. We take some N ∈ net(G) such that N� C−⇁. . .

C−⇁︸ ︷︷ ︸
m times

N ′,

where C denotes the sequence of reduction labels corresponding to the exchange between c and d. By
Theorem 23, there indeed are G′ and β1, . . . , βn such that G β1−→ . . .

βn−−→ G′ and N ′ −→∗ M�, with
M∈ net(G′). To be precise, following Theorem 23, indeed

G
a〉b:1〈S〉−−−−−→ c〉d:1〈S〉−−−−−→ . . .

a〉b:1〈S〉−−−−−→ c〉d:1〈S〉−−−−−→︸ ︷︷ ︸
m times

G and N� C−⇁. . .
C−⇁︸ ︷︷ ︸

m times

N ′
A−⇁. . .

A−⇁︸ ︷︷ ︸
m times

M�

where A is the sequence of reduction labels corresponding to the exchange between a and b andM∈ net(G).

4.4 Routers Strictly Generalize Centralized Orchestrators
Unlike our decentralized analysis, previous analyses of global types using binary session types rely on
centralized orchestrators (called mediums [12] or arbiters [17]). Here, we show that our approach strictly
generalizes these centralized approaches. Readers interested in our decentralized approach in action may
safely skip this section and go directly to Section 5.

We introduce an algorithm that synthesizes an orchestrator—a single process that orchestrates the
interactions between a protocol’s participants (§ 4.4.1). We show that the composition of this orchestrator
with a context of participant implementations is behaviorally equivalent to the specific case in which
routed implementations are organized in a centralized composition (Theorem 27 in § 4.4.2).

4.4.1 Synthesis of Orchestrators

We define the synthesis of an orchestrator from a global type. The orchestrator of G will have a channel
endpoint µpi for connecting to the process implementation of every pi ∈ prt(G).

Definition 36 (Orchestrator). Given a global type G and participants q̃, Algorithm 2 defines the synthesis
of an orchestrator process, denoted Oq̃[G], that orchestrates interactions according to G.

Algorithm 2 follows a similar structure as the router synthesis algorithm (Algorithm 1). The input
parameter q̃ keeps track of active participants, making sure recursions are well-defined; it should be
initialized as prt(G).

We briefly discuss how the orchestrator process is generated. The interesting case is an exchange
p�q{i〈Ui〉.Gi}i∈I (line 3), where the algorithm combines the several cases of the router’s algorithm (that
depend on the involvement of the router’s participant). First, the sets of participants deps that depend
on the sender and on the recipient are computed (line 4) using the auxiliary predicate hdep (cf. Def. 19).
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Algorithm 2: Synthesis of Orchestrator Processes (Def. 36).
1 def Oq̃[G] as
2 switch G do
3 case s� r{i〈Si〉 . Gi}i∈I do
4 deps := {q ∈ q̃ | hdep(q, s,G) ∨ hdep(q, r,G)}
5 return µs . {i : µr / i · (µq / i)q∈deps

· µs(v) . µr[w] · (v↔ w | Oq̃[Gi])}i∈I
6 case µX . G′ do
7 q̃′ := {q ∈ q̃ | G �0 q 6= •}
8 if q̃′ 6= ∅ then return µX((µq)q∈q̃′) . Oq̃′ [G

′]

9 else return 0

10 case X do return X〈(µq)q∈q̃〉
11 case skip . G′ do return Oq̃[G

′]
12 case end do return 0

Then, the algorithm returns a process (line 5) that receives a label i ∈ I over µs; forwards it over µr and
over µq for all q ∈ deps; receives a channel over µs; forwards it over µr; and continues as Oq̃[Gi].

The synthesis of a recursive definition µX .G′ (line 6) requires care, as the set of active participants q̃
may change. In order to decide which q ∈ q̃ are active in G′, the algorithm computes the local projection
of G onto each q ∈ q̃ to determine the orchestrator’s future behavior on µq, creating a new set q̃′ with
those q ∈ q̃ for which the projection is different from • (line 7). Then, the algorithm returns a recursive
process with as context the channel endpoints µq for q ∈ q̃′, with Oq̃′ [G

′] as the body.
The synthesis of a recursive call X (line 10) yields a recursive call with as context the channels µq

for q ∈ q̃. Finally, for skip . G′ (line 11) the algorithm returns the orchestrator for G′, and for • (line 12)
the algorithm returns 0.

There is a minor difference between the orchestrators synthesized by Algorithm 2 and the mediums
defined by Caires and Pérez [12]. The difference is in the underlined portion in line 5, which denotes
explicit messages (obtained via dependency detection) needed to deal with non-local choices. The medi-
ums by Caires and Pérez do not include such communications, as their typability is based on local types,
which rely on a merge operation at projection time. The explicit actions in line 5 make the orchestrator
compatible with participant implementations that connect with routers. Aside from these actions, our
concept of orchestrator is essentially the same as that of mediums.

Crucially, orchestrators can be typed using local projection (cf. Def. 23) similar to the typing of
routers using relative projection (cf. Theorem 11). This result follows by construction:

Theorem 24. Given a closed, relative well-formed global type G,

Oprt(G)[G] ` ∅; (µp : (G �0 p))
p∈prt(G)

.

Proof. We prove a more general statement. Suppose given a closed, relative well-formed global type G.
Also, suppose given a global type Gs ≤C G. Consider:

• the participants that are active in Gs: q̃ = {q ∈ prt(G) | ∃p ∈ prt(G). (p, q) ∈ active(C,G)},

• the absolute priority of Gs: oC = ctxpri(C),

• the sequence of bound recursion variables of Gs: X̃C = ctxbind(C),

• for every X ∈ X̃C :

– the body of the recursive definition on X in G: GX = recdef(X,G),

– the participants that are active inGX : q̃X = {q ∈ prt(G) | ∃p ∈ prt(G). (p, q) ∈ recactive(X,G)},
– the absolute priority of GX : oX = varpri(X,G),

– the sequence of bound recursion variables of GX excluding X: ỸX = subbind(µX . GX , G),
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– the type required for µq for a recursive call on X:

AX,q = deepUnfold(GX �
oX q, (Y, tY , GY �

oY q)
Y ∈ỸX )

– the minimum lift for typing a recursive definition on X: tX = maxpr

(
(AX,q)q∈q̃X

)
+ 1,

• the type expected for µq for the orchestrator for Gs:

Dq = deepUnfold(Gs �
oC q, (X, tX , GX �

oX q)
X∈X̃C ).

Then, we have:

Oq̃[Gs] `
(
X :

(
AX,q

)
q∈q̃X

)
X∈X̃C

;
(
µq : Dq

)
q∈q̃

Similar to how Theorem 11 follows from Theorem 16, the thesis follows as a corollary from this more
general statement (cf. the proof of Theorem 11 on Page 36).

We apply induction on the structure of Gs, with six cases as in Algorithm 2. We only detail the cases
of exchange and recursion.

• Exchange: Gs = s� r{i〈Si〉 . Gi}i∈I (line 3).
Following similar reasoning as in the case for exchange in the proof of Theorem 16, we can omit
the unfoldings on types, as well as the recursive context.
Let depss := {q ∈ q̃ | hdep(q, s,Gs)} and depsr := {q ∈ q̃ \ depss | hdep(q, r,Gs)}. Note that
depss ∪ depsr coincides with deps as defined on line 4 and that s, r /∈ depss ∪ depsr.
Let us take stock of the types we expect for each of the orchestrator’s channels.

For µs we expect Gs �
o s = ⊕o{i : LSiM⊗o+1 (Gi �

o+4 s)}i∈I
= &o{i : LSiM

&o+1 (Gi �
o+4 s)}i∈I . (30)

For µr we expect Gs �
o r = &o+2{i : LSiM

&o+3 (Gi �
o+4 r)}i∈I

= ⊕o+2{i : LSiM⊗o+3 (Gi �
o+4 r)}i∈I . (31)

For each q ∈ depss,

for µq we expect Gs �
o q = &o+2{i : (Gi �

o+4 q)}i∈I

= ⊕o+2{i : (Gi �
o+4 q)}i∈I . (32)

For each q ∈ depsr,

for µq we expect Gs �
o q = &o+3{i : (Gi �

o+4 q)}i∈I

= ⊕o+3{i : (Gi �
o+4 q)}i∈I . (33)

For each q ∈ q̃ \ depss \ depsr \ {s, r},

for µq we expect Gs �
o q = Gi′ �

o+4 q for any i′ ∈ I. (34)

Let us now consider the process returned by Algorithm 1, with each prefix marked with a number.

Oq̃[G] = µs . {i :︸ ︷︷ ︸
1

µr / i︸ ︷︷ ︸
2i

· (µq / i)q∈deps︸ ︷︷ ︸
3i

·µs(v)︸ ︷︷ ︸
4i

. µr[w]︸ ︷︷ ︸
5i

·(v↔ w | Oq̃[Gi])}i∈I

For each i′ ∈ I, let Ci′ := C[s � r({i〈Si〉 . Gi}i∈I\{i′} ∪ {i′〈Si′〉 . []})]. Clearly, Gi′ ≤Ci′ G.
Also, because we are not adding recursion binders, the current value of q̃ is appropriate for the
IH. With Ci′ and q̃, we apply the IH to obtain the typing of Oq̃[Gi′ ], where priorities start at
ctxpri(Ci′) = ctxpri(C) + 4 (cf. Def. 32). Following these typings, Figure 12 gives the typing of
Oq̃[Gs], referring to parts of the process by the number marking its foremost prefix above.
Clearly, the priorities in the derivation in Figure 12 meet all requirements. The order of the
applications of ⊕? for each q ∈ depss ∪ depsr does not matter, since the selection actions are
asynchronous.
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∀i ∈ I. v↔ w ` v : Si, w : Si
Id

∀i ∈ I. Oq̃[Gi] ` (µq : Gi �
o+4 q)

q∈q̃

∀i ∈ I. v↔ w | Oq̃[Gi] ` v : Si, w : Si,

(µq : Gi�
o+4q)

q∈q̃

Mix

∀i ∈ I. 5i ` v : Si,

µr : LSiM⊗
o+3 (Gi �o+4 r),

(µq : Gi �
o+4 q)

q∈q̃\{r}

⊗?

∀i ∈ I. 4i ` µs : LSiM

&o+1 (Gi �o+4 s),

µr : LSiM⊗
o+3 (Gi �o+4 r),

(µq : Gi �
o+4 q)

q∈q̃\{s,r}

&

∀i ∈ I. 3i ` µs : LSiM

&o+1 (Gi �o+4 s),

µr : LSiM⊗
o+3 (Gi �o+4 r),

(µq : ⊕
o+2{i : (Gi �o+4 q)}i∈I)q∈depss

(µq : ⊕
o+3{i : (Gi �o+4 q)}i∈I)q∈depsr

(µq : Gi �
o+4 q)

q∈q̃\depss\depsr\{s,r}

(⊕?)∗

∀i ∈ I. 2i ` µs : LSiM

&o+1 (Gi �o+4 s),

µr : ⊕
o+2{i : LSiM⊗o+3 (Gi �o+4 r)}i∈I ,

(µq : ⊕
o+2{i : (Gi �o+4 q)}i∈I)q∈depss

(µq : ⊕
o+3{i : (Gi �o+4 q)}i∈I)q∈depsr

(µq : Gi �
o+4 q)

q∈q̃\depss\depsr\{s,r}

⊕?

Oq̃[Gs] = 1 ` µs : &
o{i : LSiM

&o+1 (Gi �o+4 s)}i∈I , (cf. (30))
µr : ⊕

o+2{i : LSiM⊗o+3 (Gi �o+4 r)}i∈I , (cf. (31))
(µq : ⊕

o+2{i : (Gi �o+4 q)}i∈I)q∈depss
(cf. (32))

(µq : ⊕
o+3{i : (Gi �o+4 q)}i∈I)q∈depsr

(cf. (33))

(µq : Gi′ �
o+4 q)

q∈q̃\depss\depsr\{s,r}
(cf. (34))

&

Figure 12: Typing derivation used in the proof of Theorem 24.

• Recursive definition: Gs = µZ . G′ (line 6). Let

q̃′ := {q ∈ q̃ | Gs �o q 6= •} (35)

(as on line 7). The analysis depends on whether q̃′ = ∅ or not.

– If q̃′ = ∅ (line 9), let us take stock of the types expected for each of the orchestrator’s channels.
For now, we omit the substitutions in the types.

For each q ∈ q̃, for µq we expect Gs �
oC q = •. (36)

Because all expected types are •, the substitutions do not affect the types, so we can omit
them altogether.
First we apply Empty, giving us an arbitrary recursive context, thus the recursive context
we need. Then, we apply • for µq for each q ∈ q̃ (cf. (36)), and obtain the typing of Oq̃[Gs]
(omitting the recursive context):

Oq̃[Gs] = 0 ` (µq : •)
q∈q̃.

– If q̃′ 6= ∅ (line 8), let us take stock of the types expected for each of the orchestrator’s channels.
Note that, because of the recursive definition on Z in Gs, there cannot be another recursive
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definition in the context C capturing the recursion variable Z. Therefore, by Definition 30,
Z /∈ X̃C .

For each q ∈ q̃′,

for µq we expect deepUnfold(Gs �
oC q, . . .)

= deepUnfold(µZ . (G′ �oC q), . . .)

= deepUnfold(µZ . G′ �oC q, . . .)

= µZ . deepUnfold(G′ �oC q, (X, tX , GX �
oX q)

X∈X̃C ). (37)

For each q ∈ q̃ \ q̃′,

for µq we expect deepUnfold(Gs �
oC q, . . .)

= deepUnfold(•, . . .) = •. (38)

We also need an assignment in the recursive context for every X ∈ X̃C , but not for Z.
Let C ′ = C[µZ . []]. Clearly, G′ ≤C′ G. Let us establish some facts about the recursion
binders, priorities, and active participants related to C ′, G′, and Z:

∗ X̃C′ = ctxbind(C ′) = (ctxbind(C), Z) = (X̃C , Z) (cf. Def. 30).
∗ GZ = recdef(Z,G) = G′, as proven by the context C ′ (cf. Def. 31).
∗ ỸZ = subbind(µZ . GZ , G) = ctxbind(C) = X̃C .
∗ oC′ = ctxpri(C ′) = ctxpri(C) = oC , and oZ = varpri(Z,G) = ctxpriC(=)oC , and hence
oC′ = oZ (cf. Def. 32).

∗ q̃Z = q̃′ (cf. Def. 33 and (35)).

Because X̃C′ = (X̃C , Z) and q̃′ = q̃Z , q̃′ is appropriate for the IH. We apply the IH on C ′, G′,
and q̃′ to obtain a typing for Oq̃′ [G′], where we immediately make use of the facts established
above. We given the assignment to Z in the recursive context separate from those for the
recursion variables in X̃C . Also, by Proposition 15, we can write the final unfolding on Z in
the types separately.

Oq̃′ [G
′] `

(
X :

(
deepUnfold(GX �

oX q, (Y, tY , GY �
oY q)

Y ∈ỸX )
)
q∈q̃X

)
X∈X̃C

,

Z :
(
deepUnfold(G′ �oC q, (X, tX , GX �

oX q)
X∈X̃C )

)
q∈q̃′

;(
µq : unfoldtZ (µZ . deepUnfold(G′ �oC q, (X, tX , GX �

oX q)
X∈X̃C ))

)
q∈q̃′

By assumption, we have

tZ = max
pr

(
deepUnfold(G′ �oC q, (X, tX , GX �

oX q)
X∈X̃C )

)
q∈q̃′

+ 1,

so tZ is clearly bigger than the maximum priority appearing in the types before unfolding.
Hence, we can apply Rec to eliminate Z from the recursive context, and to fold the types,
giving the typing of Oq̃[Gs] = µZ((µq)q∈q̃′) . Oq̃′ [G

′]:

Oq̃[Gs] `
(
X :

(
deepUnfold(GX �

oX q, (Y, tY , GY �
oY q)

Y ∈ỸX )
)
q∈q̃X

)
X∈X̃C

;(
µq : µZ . deepUnfold(G′ �oC q, (X, tX , GX �

oX q)
X∈X̃C )

)
q∈q̃′

In this typing, the type for µq for every q ∈ q̃′ concurs with (37). For every q ∈ q̃ \ q̃′, we can
add the type for µq in (38) by applying •. This proves the thesis.

• Recursive call : Gs = Z (line 10).
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Following similar reasoning as in the case of recursive call in the proof of Theorem 16, let us take
stock of the types we expect for our orchestrator’s channels.

For each q ∈ q̃,

for µq we expect deepUnfold(Gs �
oC q, . . .)

= deepUnfold(Z �oC q, . . .)

= deepUnfold(Z, . . .)

= deepUnfold(Z, (X, tX , GX �
oX q)

X∈(X̃1,Z,ỸZ)
)

= deepUnfold(Z, (X, tX , GX �
oX q)

X∈(Z,ỸZ)
)

= µZ . (↑tZdeepUnfold(GZ �
oZ q, (X, tX , GX �

oX q)
X∈ỸZ )) (39)

Also, we need an assignment in the recursive context for every X ∈ X̃C . By Lemma 13, q̃ = q̃Z .
Hence, for Z, the assignment should be as follows:

Z :
(

deepUnfold(GZ �
oZ q, (X, tX , GX �

oX q)
X∈ỸZ )

)
q∈q̃

(40)

We apply Var to obtain the typing of Oq̃[Gs], where we make us the rule’s allowance for an arbitrary
recursive context up to the assignment to Z. Var is applicable, because the types are recursive
definitions on Z, concurring with the types assigned to Z, and lifted by a common lifter tZ .

Oq̃[Gs] = X〈(µq)q∈q̃〉 `
(
X :

(
deepUnfold(GX �

oX q, (Y, tY , GY �
oY q)

Y ∈ỸX )
)
q∈q̃X

)
X∈X̃C\(Z)

,

Z :
(

deepUnfold(GZ �
oZ q, (X, tX , GX �

oX q)
X∈ỸZ )

)
q∈q̃

;(
µq : µZ . (↑tZdeepUnfold(GZ �

oZ q, (X, tX , GX �
oX q)

X∈ỸZ ))
)
q∈q̃

Var

In this typing, the types of µq for each q ∈ q̃ concur with the expected types in (39), and the
assignment to Z in the recursive context concurs with (40). This proves the thesis.

4.4.2 Orchestrators and Centralized Compositions of Routers are Behaviorally Equivalent

First, we formalize what we mean with a centralized composition of routers, which we call a hub of routers.
A hub of routers is just a specific composition of routers, formalized as the centralized composition of
the routers of all a global type’s participants synthesized from the global type:

Definition 37 (Hub of a Global Type). Given global type G, we define the hub of routers of G as
follows:

HG := (νpqqp)p,q∈prt(G)

(∏
p∈prt(G)Rp

)
Hubs of routers can be typed using local projection (cf. Def. 23), identical to the typing of orchestrators

(cf. Theorem 24):

Theorem 25. For relative well-formed global type G and priority o,

HG ` ∅; (µp : (G �o p))
p∈prt(G)

.

Proof. By the typability of routers (Theorem 11) and the duality of the types of the endpoints connecting
pairs of routers (Theorem 9).

To state the behavioral equivalence of orchestrators and hubs of routers, we first define the specific
behavioral equivalence we desire. To this end, we first define a labeled transition system (LTS) for APCP:
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x[a, b]
x[a,b]−−−→ 0

Out
P

x[a,b]−−−→ P ′

(νya)(νzb)P
(νya)(νzb)x[a,b]−−−−−−−−−−→ P ′

Out-open

x(v, w) . P
x(v,w)−−−−→ P

In
P

(νya)(νzb)x[a,b]−−−−−−−−−−→ P ′ Q
x(v,w)−−−−→ Q′

P |Q τ−→ (νyv)(νzw)(P ′ |Q′)
Out-close

x[b] / j
x[b]/j−−−−→ 0

Sel
P

x[b]/j−−−−→ P ′

(νzb)P
(νzb)x[b]/j−−−−−−−→ P ′

Sel-open

j ∈ I

x(w) . {i : Pi}i∈I
x(w).j−−−−→ Pj

Bra
P

(νzb)x[b]/j−−−−−−−→ P ′ Q
x(w).j−−−−→ Q′

P |Q τ−→ (νzw)(P ′ |Q′)
Sel-close

P
α−→ Q bn(α) ∩ fn(R) = ∅

P |R α−→ Q |R
Par-L

P
α−→ Q bn(α) ∩ fn(R) = ∅

R | P α−→ R |Q
Par-R

(νyz)(x↔ y | P )
τ−→ P{x/z}

Id
P

α−→ Q {y, y′} ∩ fn(α) = ∅
(νyy′)P

α−→ (νyy′)Q
Res

Figure 13: Labeled transition system for APCP (cf. Definition 38).

Definition 38 (LTS for APCP). We define the labels α for transitions for processes as follows:

α ::= τ communication
| x[a, b] output | (νya)(νzb)x[a, b] bound output
| x[b] / j selection | (νzb)x[b] / j bound selection
| x(v, w) input | x(w) . j branch

The relation labeled transition (P α−→ Q) is then defined by the rules in Figure 13.

Proposition 26. P −→ Q if and only if P τ−→ Q.

As customary, we write⇒ for the reflexive, transitive closure of τ−→, and we write α
=⇒ for⇒ α−→⇒ if α 6= τ

and for ⇒ otherwise.
We can now define the behavioral equivalence we desire:

Definition 39 (Weak bisimilarity). A binary relation B on processes is a weak bisimulation if whenever
(P,Q) ∈ B,

• P
α−→ P ′ implies that there is Q′ such that Q α

=⇒ Q′ and (P ′, Q′) ∈ B, and

• Q
α−→ Q′ implies that there is P ′ such that P α

=⇒ P ′ and (P ′, Q′) ∈ B.

Two processes P and Q are weakly bisimilar if there exists a weak bisimulation B such that (P,Q) ∈ B.

Our equivalence result shall relate an orchestrator and a hub on a single but arbitrary channel. In
order to isolate such a channel, we place the orchestrator and hub of routers in an evaluation context
consisting of restrictions and parallel compositions with arbitrary processes, such that it connects all but
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one of the orchestrator’s or hub’s channels. For example, given a global type G and implementations
Pq ` ∅;µq : G �0 q for every participant q ∈ prt(G) \ {p}, we could use the following evaluation context:

E := (νµqqµ)q∈prt(G)\{p}
(∏

q∈prt(G)\{p}Pq | [ ]
)

Replacing the hole in this evaluation context with the orchestrator or hub of routers of G leaves one
channel free: the channel µp for the implementation of p. Now, we can observe the behavior of these two
processes on µp.

In what follows we write Oq̃G instead of Oq̃[G]. When we appeal to router and orchestrator synthesis,
we often omit the parameter q̃. That is, we write JGKp instead of JGKq̃p, and OG instead of Oq̃G.

Theorem 27. Suppose given a relative well-formed global type G. Let HG be the hub of routers of G
(Def. 37) and take the orchestrator Oprt(G)

G of G (Def. 36). Let p ∈ prt(G), and let E be an evaluation
context such that E[HG] ` ∅;µp : (G �o p). Then, E[HG] and E[OG] are weakly bisimilar (Def. 39).

We first give an intuition for the proof of Theorem 27 and its ingredients, after which we give the proof
and detail the ingredients. The proof is by coinduction, i.e., by exhibiting a weak bisimulation B that
contains the pair (E[HG], E[OG]). To construct B and prove that it is a weak bisimulation we require
the following:

• We define a function that, given a global type G and a starting relation B0, computes a corre-
sponding candidate relation. This function is denoted B(G,B0) (Def. 40).

• Suppose G β1−→ . . .
βk−→ G′, with k ≥ 0. Given some starting relation B0, we want to show that

the relation obtained from B(G′,B0) is a weak bisimulation, for which we need to assert that B0

is an appropriate starting relation. To this end, we define a function that computes a consistent
starting relation for a bisimulation relation, given a pair (P,Q) of processes and a participant p of
G. This function is denoted 〈G β1−→ . . .

βk−→ G′, (P,Q), p〉 (Def. 41).

• The property that processes in such a consistent starting relation follow a pattern of specific labeled
transitions, passing through a context containing the router of p or the orchestrator (Lemma 28).

• The property that the relation obtained from B(G′,B0, p) is a weak bisimulation, given the consis-
tent starting relation B0 = 〈G β1−→ . . .

βk−→ G′, (E[HG], E[OG]), p〉 (Lemma 29).

Theorem 27 follows from these definitions and results:

Proof of Theorem 27. Let B = B(G,B0), where B0 = 〈G, (E[HG], E[OG]), p〉. By Lemma 29, B is a weak
bisimulation. Because (E[HG], E[OG]) ∈ B0 ⊆ B, it then follows that E[HG] and E[OG] are weakly
bisimilar.

We setup some notations:

Notation 4. We adopt the following notational conventions.

• We write Proc to denote the set of all typable APCP processes.

• In the LTS for APCP (Def. 38), we simplify labels: we write an overlined variant for output and
selection (e.g., for (νab)µp[a] / ` we write µp / `), and omit continuation channels for input and
branching (e.g., for µp(a) . ` we write µp . `).

• Also, we write P α1...αn=====⇒ Q rather than P α1==⇒ P1
α2==⇒ P2 . . .

αn==⇒ Q.

• We write α̃ to denote a sequence of labels, e.g., if α̃ = α1 . . . αn then α̃
=⇒ =

α1...αn=====⇒. If α̃ = ε

(empty sequence), then α̃
=⇒ =⇒.

The following function defines a relation on processes, which we will use as the weak bisimulation
between E[HG] and E[OG]:
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Definition 40 (Candidate Relation). Let G be a global type and let p be a participant of G. Also, let
B0 ⊆ Proc×Proc denote a relation on processes. We define a candidate relation for a weak bisimulation
of the hub and orchestrator of G observed on µp starting at B0, by abuse of notation denoted B(G,B0, p).
The definition is inductive on the structure of G:

• G = •. Then B(G,B0, p) = B0.

• G = s� r{i〈Si〉 . Gi}i∈I . We distinguish four cases, depending on the involvement of p:

– p = s. For every i ∈ I, let

Bi1 = {(P1, Q1) | ∃(P0, Q0) ∈ B0 s.t. P0

µp.i−−−→⇒ P1 and Q0

µp.i−−−→⇒ Q1};

Bi2 = {(P2, Q2) | ∃(P1, Q1) ∈ Bi1 s.t. P1

µp(y)−−−→⇒ P2 and Q1

µp(y)−−−→⇒ Q2}

Then
B(G,B0, p) = B0 ∪

⋃
i∈I(B

i
1 ∪ B(Gi,Bi2, p)).

– p = r. For every i ∈ I, let

Bi1 = {(P1, Q1) | ∃(P0, Q0) ∈ B0 s.t. P0

µp/i−−−→⇒ P1 and Q0

µp/i−−−→⇒ Q1};

Bi2 = {(P2, Q2) | ∃(P1, Q1) ∈ B1 and y s.t. P1

µp[y]−−−→⇒ P2 and Q1

µp[y]−−−→⇒ Q2}.

Then
B(G,B0, p) = B0 ∪

⋃
i∈I(B

i
1 ∪ B(Gi,Bi2, p)).

– p /∈ {s, r} and hdep(p, s,G) or hdep(p, r,G). For every i ∈ I, let

Bi1 = {(P1, Q1) | ∃(P0, Q0) ∈ B0 s.t. P0

µp/i−−−→⇒ P1 and Q0

µp/i−−−→⇒ Q1}

Then
B(G,B0, p) = B0 ∪

⋃
i∈IB(Gi,Bi1, p).

– p /∈ {s, r} and neither hdep(p, s,G) nor hdep(p, r,G). Then

B(G,B0, p) = B(Gj ,B0, p)

for any j ∈ I.

• G = µX . G′. Then B(G,B0, p) = B(G′{µX . G′/X},B0, p).

• G = skip . G′. Then B(G,B0, p) = B(G′,B0, p).

The function B(G,B0, p) constructs a relation between processes by following labeled transitions on µp
that concur with the expected behavior of p’s router and the orchestrator depending on the shape of
G. For example, for G = s� p{i〈Si〉 . Gi}i∈I , for each i ∈ I, the function constructs Bi1 containing
the processes reachable from B0 through a transition labeled µp / i (selection of the label chosen by s),
and Bi2 containing the processes reachable from B0 through a transition labeled µp[y] (output of the
endpoint sent by s); the resulting relation then consists of B0 and, for each i ∈ I, Bi1 and B(Gi,Bi2, p)
(i.e., the candidate relation for Gi starting with Bi2). Since we are interested in a weak bisimulation, the
τ -transitions of one process do not need to be simulated by related processes. Hence, e.g., if (P,Q) ∈ B0

and P
τ−→ P ′ and Q

τ−→ Q′, then {(P,Q), (P ′, Q), (P,Q′), (P ′, Q′)} ⊆ B(G,B0, p). This way, we only
synchronize related processes when they can both take the same labeled transition.

We intend to show that, if G β1−→ . . .
βk−→ G′, the function B(G′,B0, p) constructs a weak bisimulation.

However, for this to hold, the starting relation B0 cannot be arbitrary: the pairs of processes in B0 have
to be reachable from E[HG] and E[OG] through labeled transitions that concur with the transitions from
G to G′. Moreover, the processes must have “passed through” evaluation contexts containing the router
for p at G′ and the orchestrator at G′. The following defines a consistent starting relation, parametric on
k, that satisfies these requirements. Note that for constructing the relation B, we only need the following
definition for k = 0. However, in the proof that B is a weak bisimulation we need to generalize it to
k ≥ 0 to assure that the starting relation of coinductive steps is consistent.
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Definition 41 (Consistent Starting Relation). Let G β1−→ . . .
βk−→ G′ (with k ≥ 0) be a sequence of

labeled transitions from G to G′ including the intermediate global types (cf. Definition 35) and let p be a
participant of G. Also, let (P,Q) be a pair of initial processes. We define the consistent starting relation
for observing the hub and orchestrator of G′ on µp starting at (P,Q) after the transitions from G to G′,

denoted 〈G β1−→ . . .
βk−→ G′, (P,Q), p〉. The definition is inductive on the number k of transitions:

• k = 0. Then 〈G, (P,Q), p〉 = {(P ′, Q′) | P ⇒ P ′ and Q⇒ Q′}.

• k = k′ + 1. Then

〈G β1−→ . . .
βk′−−→ Gk′

βk−→ Gk, (P,Q), p〉 =

{(Pk, Qk) | ∃(Pk′ , Qk′) ∈ 〈G
β1−→ . . .

βk′−−→ Gk′ , (P,Q), p〉
s.t. ( (∃C s.t. Pk′

α̃
=⇒ C[JGkKp]⇒ Pk)

and (∃D s.t. Qk′
α̃
=⇒ D[OGk ]⇒ Qk))},

where α̃ depends on βk = s〉r : j〈Sj〉 and Gk′ (in unfolded form if Gk′ = µX . G′k′):

– If p = s, then α̃ = µp . j µp(y).

– If p = r, then α̃ = µp / j µp[y].

– If p /∈ {s, r} and hdep(p, s,Gk) or hdep(p, r,Gk), then α̃ = µp / j.

– If p /∈ {s, r} and neither hdep(p, s,Gk) nor hdep(p, r,Gk), then α̃ = ε.

Lemma 28. Let G be a relative well-formed global type such that G β1−→ . . .
βk−→ G′ for k ≥ 0 and let p

be a participant of G. Also, let E be an evaluation context such that fn(E) = {µp}. Then there exists α̃

such that, for every (P,Q) ∈ 〈G β1−→ . . .
βk−→ G′, (E[HG], E[OG]), p〉,

• E[HG]
α̃
=⇒ C

[
JG′Kp

]
⇒ P where C is an evaluation context without an output or selection on µp;

and

• E[OG]
α̃
=⇒ D

[
OG′

]
⇒ Q where D is an evaluation context without an output or selection on µp.

Proof. By induction on k. In the base case (k = 0), we have G = G′, so E[HG] = C[JG′Kp] ⇒ P and
E[O] = D[OG′ ]⇒ Q.

For the inductive case (k = k′ + 1), we detail the representative case where

G
β1−→ . . .

βk′−−→ Gk′ = p� s{i〈Si〉 . G′i}i∈I
p〉s:i′〈Si′ 〉−−−−−−→ G′

for some i′ ∈ I. By the IH, for every (Pk′ , Qk′) ∈ 〈G
β1−→ . . .

βk′−−→ Gk′ , (E[HG], E[OG]), p〉, there exists

α̃′ such that E[HG]
α̃′
==⇒ C ′[JGk′K

p
]⇒ Pk′ and E[OG]

α̃′
==⇒ D′[OGk′ ]⇒ Qk′ where C ′ and D′ are without

output or selection on µp. Take any (P,Q) ∈ 〈G β1−→ . . .
βk′−−→ Gk′

s〉p:i′〈Si′ 〉−−−−−−→ G′, (E[HG], E[OG]), p〉. By

definition, there exists (Pk′ , Qk′) ∈ 〈G
β1−→ . . .

βk′−−→ Gk′ , (E[HG], E[OG]), p〉 such that

Pk′
µp/i

′ µp[y]
=======⇒ C[JG′Kp]⇒ P and Qk′

µp/i
′ µp[y]

=======⇒ D[OG′ ]⇒ Q

where there are no outputs or selection on µp in C and D. Let α̃ = α̃′ µp / i
′ µp[y]. Then

E[HG]
α̃
=⇒ C[JG′Kp]⇒ P and E[OG]

α̃
=⇒ D[OG′ ]⇒ Q.

Lemma 29. Let G be a relative well-formed global type such that G β1−→ . . .
βk−→ G′ (with k ≥ 0) and let

p be a participant of G. Also, let E be an evaluation context such that fn(E) = {µp}. Then the relation

B(G′,B0), with B0 = 〈G β1−→ . . .
βk−→ G′, (E[HG], E[OG]), p〉, is a weak bisimulation (cf. Definition 39).
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Proof. By coinduction on the structure of G′; there are four cases (communication, recursion, skip,
and •). We only detail the interesting case of communication, which is the only case which involves
transitions with labels other than τ . There are four subcases depending on the involvement of p in the
communication (p is sender, p is recipient, p depends on the communication, or p does not depend on
the communication). In each subcase, the proof follows the same pattern, so as a representative case, we
detail when p is the recipient of the communication, i.e., G′ = s� p{i〈Si〉 . G′i}i∈I . Recall

JG′Kp = ps .
{
i: µp / i · (pq / i)q∈deps

· ps(v) . µp[w] · (v↔ w | JG′iKp)
}
i∈I , (Algorithm 1 line 6)

JG′Ks = µp .
{
i: sp / i · (sq / i)q∈deps · µs(v) . sp[w] · (v↔ w | JG′iKs)

}
i∈I , (Algorithm 1 line 5)

OG′ = µs . {i: µp / i · (µq / i)q∈deps
· µs(v) . µp[w] · (v↔ w | OG′i)}i∈I . (Algorithm 2 line 3)

Let B = B(G′,B0). We have B = B0 ∪
⋃
i∈I(Bi1 ∪ B(G′i,Bi2)) with Bi1 and Bi2 as defined above. Take any

(P,Q) ∈ B; we distinguish cases depending on the subset of B to which (P,Q) belongs:

• (P,Q) ∈ B0. By Lemma 28, we have E[HG]
α̃
=⇒ C[JG′Kp] ⇒ P and E[O]

α̃
=⇒ D[OG′ ] ⇒ Q, where

C and D do not contain an output or selection on µp.

Suppose P α−→ P ′; we need to exhibit a matching weak transition from Q. By assumption, there
are no outputs or selections on µp in C and D. Since there are no outputs or selections on µp in
C, by definition of JG′Kp, we need only consider two cases for α:

– α = τ . We have Q ⇒ Q, so Q
τ
=⇒ Q. Since C[JG′Kp] ⇒ P ′ and D[OG′ ] ⇒ Q, we have

(P ′, Q) ∈ B0 ⊆ B.
– α = µp / j for some j ∈ I. To enable this transition, which originates from p’s router,

somewhere in the τ -transitions between C[JG′Kp] and P the label j was received on ps, sent
by the router of s on sp. For this to happen, the label j was received on µs, sent from the
context on sµ. Since HG and O are embedded in the same context, the communication of
j between sµ and µs can also take place after a number of τ -transitions from D[OG′ ], after
which the selection of j on µp becomes enabled. Hence, since there are no outputs or selection

on µp in D, we have Q ⇒ Q0

µp/j−−−→ Q′. We have D[OG′ ] ⇒ Q0, so (P,Q0) ∈ B0. Since

P
µp/j−−−→⇒ P ′ and Q0

µp/j−−−→⇒ Q′, we have (P ′, Q′) ∈ Bj1 ⊆ B′.

Now suppose Q α−→ Q′; we need to exhibit a matching weak transition from P . Again, we need
only consider two cases for α:

– α = τ . Analogous to the similar case above.

– α = µp / j for some j ∈ I. To enable this transition, which originates from the orchestrator,
somewhere in the τ -transitions between D[OG′ ] and Q the label j was received on µs, sent
from the context on sµ. Hence, this communication can also take place after a number
of transitions from E[HG], where the label is received by the router of s. After this, from
C[JG′Kp], the router of s forwards j to p’s router (communication between sp and ps), enabling
the selection of j on µp in p’s router. Hence, since there are no outputs or selections in C, we

have P ⇒ P0

µp/j−−−→ P ′. We have C[JG′Kp] ⇒ P0, so (P0, Q) ∈ B0. Since P0

µp/j−−−→⇒ P ′ and

Q
µp/j−−−→⇒ Q′, we have (P ′, Q′) ∈ Bj1 ⊆ B.

• (P,Q) ∈ Bj1 for some j ∈ I. We have E[HG]
α̃
=⇒ C[JG′Kp] ⇒ P0

µp/j−−−→⇒ P and

E[OG]
α̃
=⇒ D[OG′ ]⇒ Q0

µp/j−−−→⇒ Q where (P0, Q0) ∈ B0. Since we have already observed the se-
lection of j on µp from both the hub and the orchestrator, we know that the routers of p and s are
in branch j, and similarly the orchestrator is in branch j.

Suppose P α−→ P ′. To exhibit a matching weak transition from Q we only need to consider two
cases for α:
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– α = τ . We have Q τ
=⇒ Q, and P0

µp/j−−−→⇒ P ′ and Q0

µp/j−−−→⇒ Q, so (P ′, Q) ∈ Bj1 ⊆ B.

– α = µp[y] for some y. The observed output of some y on µp must originate from p’s router.
This output is only enabled after receiving some v over ps, which must be sent by the router of
s over sp. The output by the router of s is only enabled after receiving some v over µs, sent by
the context over sµ. Since the hub and the orchestrator are embedded in the same context, the
communication of v from sµ to µs can also occur (or has already occurred) for the orchestrator.

After this, the output of y over µp is enabled in the orchestrator, i.e., Q⇒ Q1

µp[y]−−−→ Q′. We

have Q0

µp/j−−−→⇒ Q1, so (P,Q1) ∈ Bj1. Since P
µp[y]−−−→⇒ P ′ and Q1

µp[y]−−−→⇒ Q′, we have
(P ′, Q′) ∈ Bj2. By definition, Bj2 ⊆ B(G′j , B

j
2) ⊆ B, so (P ′, Q′) ∈ B.

Now suppose Q α−→ Q′. To exhibit a matching weak transition from P we only need to consider
two cases for α:

– α = τ . Analogous to the similar case above.
– α = µp[y] for some y. The observed output of some y on µp must originate from the orches-

trator. This output is only enabled after receiving some v over µs, sent by the context of
sµ. Since the hub and the orchestrator are embeded in the same context, the communication
of v from sµ to µs can also occur (or has already occurred) for the router of s. After this,
the router of s sends another channel v′ over sp, received by p’s router on ps. This enables

the output of y on µp by p’s router, i.e., P ⇒ P1

µp[y]−−−→ P ′. We have P0

µp/j−−−→⇒ P1, so

(P1, Q) ∈ Bj1. Since P
µp[y]−−−→⇒ P ′ and Q1

µp[y]−−−→⇒ Q′, we have (P ′, Q′) ∈ Bj2. As above, this
implies that (P ′, Q′) ∈ B.

• For some j ∈ I, (P,Q) ∈ B(G′j ,B
j
2). The thesis follows from proving that B(G′j ,B

j
2) is a weak

bisimulation. For this, we want to appeal to the coinduction hypothesis, so we have to show that

Bj2 = 〈G β1−→ . . .
βk−→ G′

s〉p:j〈Sj〉−−−−−−→ G′j , (E[HG], E[O]), p〉. We prove that (P2, Q2) ∈ Bj2 if and only if

(P2, Q2) ∈ 〈G β1−→ . . .
βk−→ G′

s〉p:j〈Sj〉−−−−−−→ G′j , (E[HG], E[O]), p〉, i.e., we prove both directions of the
bi-implication:

– Take any (P2, Q2) ∈ Bj2. We have E[HG]
α̃
=⇒ C[JG′Kp] ⇒ P0

µp/j−−−→⇒ P1

µp[y]−−−→⇒ P2 and

E[O]
α̃
=⇒ D[OG′ ]⇒ Q0

µp/j−−−→⇒ Q1

µp[y]−−−→⇒ Q2, where (P0, Q0) ∈ B0 and (P1, P1) ∈ Bj1.

By definition, somewhere during the transitions from C[JG′Kp] to P1, we find C ′[JG′jKp], which
may then further reduce by τ -transitions towards P2. As soon as we do find C ′[JG′jKp],
the output on µp is available, and the selection on µp has already occurred or is still avail-
able. Because they are asynchronous actions, we can observe the selection and output on
µp as soon as they are available, before further reducing p’s router. Hence, we can observe

C[JG′Kp]⇒
µp/j−−−→⇒

µp[y]−−−→⇒ C ′′[JG′jKp]⇒ P2, i.e.,

E[HG]
α̃
=⇒ C[JG′Kp]

µp/j µp[y]
=======⇒ C ′′[JG′jKp]⇒ P2.

By definition, JG′jKp has no output or selection on µp available, so there are no outputs or
selections on µp in C ′′.

By a similar argument, we can observe D[OG′ ] ⇒
µp/j−−−→⇒

µp[y]−−−→⇒ D′′[OG′j ] ⇒ Q2, i.e.,

E[O]
α̃
=⇒ D[OG′ ]

µp/j µp[y]
=======⇒ D′′[OG′j ] ⇒ Q2. Also in this case, there are no outputs or

selections on µp in D′′.
By assumption and definition,

(C ′′[JG′Kp], D
′′[OG′ ]) ∈ B0 = 〈G β1−→ . . .

βk−→ G′, (E[HG], E[O]), p〉.
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Hence, by definition, (P2, Q2) ∈ 〈G β1−→ . . .
βk−→ G′

s〉p:j〈Sj〉−−−−−−→ G′j , (E[HG], E[O]), p〉.

– Take any (P,Q) ∈ 〈G β1−→ . . .
βk−→ G′

s〉p:j〈Sj〉−−−−−−→ G′j , (E[HG], E[O]), p〉. By definition, there are

(P ′, Q′) ∈ 〈G β1−→ . . .
βk−→ G′, (E[HG], E[O]), p〉 such that P ′

µp/j µp[y]
=======⇒ C[JG′Kp] ⇒ P and

Q′
µp/j µp[y]
=======⇒ D[OG′ ] ⇒ Q. Since, B0 = 〈G β1−→ . . .

βk−→ G′, (E[HG], E[O]), p〉, by definition

(P,Q) ∈ Bj2.

5 Routers in Action
We demonstrate our router-based analysis of global types by means of several examples. First, in § 5.1
and § 5.2 we consider two simple protocols: they illustrate the different components of our approach,
and our support for delegation and interleaving. Then in § 5.3 we revisit the authorization protocol
Gauth from Section 1 to illustrate how our analysis supports also more complex protocols featuring also
non-local choices and recursion.

5.1 Delegation and Interleaving
We illustrate our analysis by considering a global type with delegation and interleaving, based on an
example by Toninho and Yoshida [53, Ex. 6.9]. Consider the global type:

Gintrl := p� q : 1〈!int . •〉 . r� t : 2〈int〉 . p� q : 3 . •

Following Toninho and Yoshida [53], we define implementations of the roles of the four participants
(p, q, r, t) of Gintrl using three processes (P1, P2, and P3): P2 and P3 implement the roles of q and r,
respectively, and P1 interleaves the roles of p and t by sending a channel s to q and receiving an int value
v from r, which it should forward to q over s.

P1 := pµ / 1 · pµ[s] · (tµ . {2 : tµ(v) . s[w] · v↔ w} | pµ / 3 · pµ[z] · 0)

` pµ : ⊕0
{

1 : L!int . •M⊗1 ⊕8{3 : • ⊗9 •}
}
, tµ : &6{2 : •

&7 •}

P2 := qµ . {1 : qµ(y) . y(x) . qµ . {3 : qµ(u) . 0}} ` qµ : &2
{

1 : L!int . •M

&3 &10{3 : •

&11 •}
}

P3 := rµ / 2 · rµ[33] · 0 ` rµ : ⊕4{2 : • ⊗5 •}

where ‘33’ denotes a closed channel endpoint representing the number “33”.
To prove that P1, P2, and P3 correctly implement Gintrl, we compose them with the routers synthesized

from Gintrl. For example, the routers for p and t, to which P1 will connect, are as follows (omitting curly
braces for branches on a single label):

Rp = µp . 1 . pq / 1 · µp(s) . pq[s′] · (s↔ s′ | µp . 3 . pq / 3 · µp(z) . pq[z′] · (z↔ z′ | 0))

Rt = tr . 2 . µt / 2 · tr(v) . µt[v
′] · (v↔ v′ | 0)

We assign values to the priorities in L!int . •M = • ⊗o • to ensure that P1 and P2 are well-typed;
assigning o = 8 works, because the output on s in P1 occurs after the input on tµ (which has priority
6–7) and the input on y in P2 occurs before the second input on qµ (which has priority 10–11).

The types assigned to pµ and tµ in P1 coincide with (Gintrl�
0p) and (Gintrl�

0t), respectively (cf. Def. 23).
Therefore, by Theorem 11, the process P1 connect to the routers for p and t (νpµµp)(νtµµt)(P1 |Rp |Rt)
is well-typed. Similarly, (νqµµq)(P2 | Rq) and (νrµµr)(P3 | Rr) are well-typed.

The composition of these routed implementations results in the following network:

Nintrl :=
(νpqqp)(νprrp)
(νpttp)(νqrrq)
(νqttq)(νrttr)

 (νpµµp)(νtµµt)(P1 | Rp | Rt)
| (νqµµq)(P2 | Rq)
| (νrµµr)(P3 | Rr)


We have Nintrl ∈ net(Gintrl) (cf. Def. 26), so, by Theorem 18, Nintrl is deadlock-free and, by Theorem 19
and Theorem 23, it correctly implements Gintrl.
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5.2 Another Example of Delegation
Here, we further demonstrate our support for interleaving, showing how a participant can delegate the
rest of its interactions in a protocol. The following global type formalizes a protocol in which a Client
(c) asks an online Password Manager (p) to login with a Server (s):

Gdeleg := c� p : login〈S〉 . G′deleg

where

S := !(?bool . •) . S′

S′ := &{passwd : ?str .⊕{auth : !bool . •}}
G′deleg := c� s : passwd〈str〉 . s� c : auth〈bool〉 . •

Here S′ expresses the type of Rc’s channel endpoint µc. This means that we can give implementations
for c and p such that c can send its channel endpoint cµ to p, after which p logs in with s in c’s place,
forwarding the authorization boolean received from s to c. Giving such implementations is relatively
straightforward, demonstrating the flexibility of our global types and analysis using APCP and routers.

Using local projection, we can compute a type for c’s implementation to safely connect with its router

Gdeleg �
0 c = ⊕0{login : LSM⊗1 (G′deleg �

4 c)}

where

LSM = (•

&o •)⊗κ LS′M
LS′M = &π{passwd : •

&ρ ⊕δ{auth : • ⊗φ •}}
G′deleg �

4 c = ⊕4{passwd : • ⊗5 &10{auth : •

&11 •}}

Notice how LS′M = G′deleg �
4 c, given the assignments π = 4, ρ = 5, δ = 10, φ = 11.

We can use these types to guide the design of a process implementation for c. Consider the process:

Q := cµ / login · cµ[u] · u[v] · (u↔ cµ | v(a) . 0) ` ∅; cµ : Gdeleg �
0 c

This implementation is interesting: after the first exchange in Gdeleg—sending a fresh channel u (to p)—
c sends another fresh channel v over u; then, c delegates the rest of its exchanges in G′deleg by forwarding
all traffic on cµ over u; in the meantime, c awaits an authorization boolean over v.

Again, using local projection, we can compute a type for p’s implementation to connect with its
router:

Gdeleg �
0 p = &2{login : LSM

&3 •}

We can then use it to type the following implementation for p:

P := pµ .


login : pµ(cµ) . cµ(v)

. cµ / passwd · cµ[pwd123]
· cµ / {auth : cµ(a) . v[a′] · a↔ a′}

 ` ∅; pµ : Gdeleg �
0 p

In this implementation, p receives a channel cµ (from c) over which it first receives a channel v. Then,
it behaves over cµ according to c’s role in G′deleg. Finally, p forwards the authorization boolean received
from s over v, effectively sending the boolean to c.

Given an implementation for s, say S ` ∅; sµ : Gdeleg �
0 s, what remains is to assign values to the

remaining priorities in LSM: assigning o = 12, κ = 4 works. Now, we can compose the implementations
P , Q and S with their respective routers and then compose these routed implementations together to
form a deadlock-free network of Gdeleg. This way, e.g., the router for c is as follows (again, omitting curly
braces for branches on a single label):

Rc = µc . login . cp / login · µc(u) . cp[u
′] · (

u↔ u′ | µc . passwd . cs / passwd · µc(v) . cs[v
′] · (

v↔ v′ | cs . auth . µc / auth · cs(w) . µc[w
′] · (w↔ w′ | 0)))

Interestingly, the router is agnostic of the fact that the endpoint u it receives over µc is in fact the
opposite endpoint of the channel formed by µc.
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5.3 The Authorization Protocol in Action
Let us repeat Gauth from Section 1:

Gauth = µX . s� c

{
login . c� a : passwd〈str〉 . a� s : auth〈bool〉 . X,
quit . c� a : quit . •

}
The relative projections of Gauth are as follows:

Gauth � (s, a) = µX . s!c

{
login . skip . a : auth〈bool〉 . X,
quit . skip . •

}
Gauth � (c, a) = µX . c?s

{
login . c : passwd〈str〉 . skip . X,
quit . c : quit . •

}
Gauth � (s, c) = µX . s

{
login . skip2 . X,
quit . skip . •

}
The typed routers synthesized from Gauth are given in Figure 14. Let us explain the behavior of

Ra, the router of a. Ra is a recursive process on recursion variable X, using the endpoint for the
implementation µa and the endpoint for the other routers ac and as as context. The initial message
in Gauth from s to c is a dependency for a’s interactions with both s and c. Therefore, the router first
branches on the first dependency with s: a label received over as (login or quit). Let us detail the login
branch. Here, the router sends login over µa. Then, the router branches on the second dependency with
c: a label received over ac (again, login or quit).

• In the second login branch, the router receives the label passwd over ac, which it then sends over µa.
The router then receives an endpoint (the password) over ac, which it forwards over µa. Finally,
the router receives the label auth over µa, which it sends over as. Then, the router receives an
endpoint (the authorization result) over µa, which it forwards over as. The router then recurses to
the beginning of the loop on the recursion variable X, passing the endpoints µa, as, ac as recursive
context.

• In the quit branch, the router is in an inconsistent state, because it has received a label over ac
which does not concur with the label received over as. Hence, the router signals an alarm on its
endpoints µa, as, ac.

Notice how the typing of the routers in Figure 14 follows Theorem 11: for each p ∈ {c, s, a}, the
endpoint µp is typed with local projection (Def. 23), and for each q ∈ {c, s, a} \ {p} the endpoint pq is
typed with relative projection (Defs. 17 and 24).

Consider again the participant implementations given in Example 1: P implements the role of c, Q
the role of s, and R the role of a. Notice that the types of the channels of these processes coincide with
relative projections:

P ` ∅; cµ : Gauth �
0 c Q ` ∅; sµ : Gauth �

0 s R ` ∅; aµ : Gauth �
0 a

Let us explore how to compose these implementations with their respective routers. The order of com-
position determines the network topology.

Decentralized By first composing each router with their respective implementation, and then compos-
ing the resulting routed implementations, we obtain a decentralized topology:

Ndecentralized
auth :=

(νcssc)
(νcaac)
(νsaas)

 (νµccµ) (Rc | P )
| (νµssµ)(Rs |Q)
| (νµaaµ)(Ra |R)


This composition is in fact a network of routed implementations of G (cf. Def. 26), so Theorems 18,
19 and 23 apply: we have Ndecentralized

auth ∈ net(Gauth), so Ndecentralized
auth behaves as specified by Gauth

and is deadlock-free.
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Rc = µX(µc, cs, ca) . cs .



login : µc / login · ca / login · cs(u) . µc[u
′]

· (u↔ u′ | µc .
{
passwd : ca / passwd · µc(v) . ca[v′]

· (v↔ v′ |X〈µc, cs, ca〉)

}
),

quit : µc / quit · ca / quit · cs(w) . µc[w
′]

· (w↔ w′ | µc .
{
quit : ca / quit · µc(z) . ca[z′]

· (z↔ z′ | 0)

}
)


` µc : µX .⊕2

{
login : • ⊗3 &4{passwd : •

&5 X},
quit : • ⊗3 &4{quit : •

&5 •}

}
= (Gauth �

0 c),

cs : µX .&1{login : •

&2 X, quit : •

&2 •} = LGauth � (c, s)M0c〉s,

ca : µX .⊕2

{
login : ⊕5{passwd : • ⊗6 X},
quit : ⊕5{quit : • ⊗6 •}

}
= LGauth � (c, a)M0c〉a

Rs = µX(µs, sc, sa) . µs .


login : sc / login · sa / login · µs(u) . sc[u

′]

· (u↔ u′ | sa .
{
auth : µs / auth · sa(v) . µs[v

′]
· (v↔ v′ |X〈µs, sc, sa〉)

}
),

quit : sc / quit · sa / quit · µs(v) . sc[v
′]

· (v↔ v′ | 0)


` µs : µX .&0{login : •

&1 ⊕10{auth : • ⊗11 X}, quit : •

&1 •} = (Gauth �
0 s),

sc : µX .⊕1{login : • ⊗2 X, quit : • ⊗2 •} = LGauth � (s, c)M0s〉c,
sa : µX .⊕1{login : &9{auth : •

&10 X}, quit : •} = LGauth � (s, a)M0s〉a

Ra = µX(µa, ac, as) . as .



login : µa / login

· ac .



login :

ac .


passwd : µa / passwd · ac(u) . µa[u′]

·


u↔ u′

| µa .

auth :
as / auth · µa(v) . as[v

′]
· (v↔ v′ |X〈µa, ac, as〉)



 ,

quit : alarm(µa, ac, as)


,

quit : µa / quit

· ac .
{
login : alarm(µa, ac, as),
quit : ac . {quit : µa / quit · ac(w) . µa[w′] · (w↔ w′ | 0)},

}


` µa : µX .⊕2

{
login : ⊕6{passwd : • ⊗7 &8{auth : •

&9 X}},
quit : ⊕6{quit : • ⊗7 •}

}
= (Gauth �

0 a),

ac : µX .&2

{
login : &5{passwd : •

&6 X},
quit : &5{quit : •

&6 •}

}
= LGauth � (a, c)M0a〉c,

as : µX .&1{login : ⊕9{auth : • ⊗10 X}, quit : •} = LGauth � (a, s)M0a〉s

Figure 14: Routers synthesized from Gauth.

Centralized By first composing the routers, and then composing the connected routers with each
implementation, we obtain a centralized topology:

N centralized
auth :=

(νµccµ)
(νµssµ)
(νµaaµ)

(νcssc)
(νcaac)
(νsaas)

 Rc
| Rs
| Ra

 | P|Q
|R


Note that the composition of routers is a hub of routers (Def. 37). Consider the composition of P ,
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O{c,s,a}[Gauth]

= µX(µc, µs, µa)

. µs .



login : µc / login · µa / login · µs(u) . µc[u
′]

· (u↔ u′ | µc .

auth : µa / passwd · µc(v) . µa[v′]

· (v↔ v′ | µa .
{
auth : µs / auth · µa(w) . µs[w

′]
· (w↔ w′ |X〈µc, µs, µa〉)

}
)

),

quit : µc / quit · µa / quit · µs(z) . µc[z′]
· (z↔ z′ | µc . {quit : µa / quit · µc(y) . µa[y′] · (y↔ y′ | 0)})


` µc : Gauth �

0 c, µs : Gauth �
0 s, µa : Gauth �

0 a

Figure 15: Orchestrator synthesized from Gauth (cf. Def. 36).

Q and R with the orchestrator of Gauth (given in Figure 15):

Norchestrator
auth :=

(νµccµ)
(νµssµ)
(νµaaµ)

O{c,s,a}[Gauth]
| P
|Q
|R


By Theorem 27, the hub of routers and the orchestrator of Gauth are weakly bisimilar (Def. 39).
Hence, N centralized

auth and Norchestrator
auth behave the same.

Since each of N top
auth with top ∈ {decentralized, centralized, orchestrator} is typable in empty contexts, by

Theorem 18, each of these compositions is deadlock-free. Moreover, Ndecentralized
auth and N centralized

auth are
structurally congruent, so, by Theorems 19 and 23, they behave as prescribed by Gauth. Finally, by
Theorem 27, N centralized

auth and Norchestrator
auth are bisimilar, and so Norchestrator

auth also behaves as prescribed by
Gauth.

6 Related Work
Types for Deadlock-freedom Our decentralized analysis of global types is related to type systems
that ensure deadlock-freedom for multiparty sessions with delegation and interleaving [7, 46, 22]. Unlike
these works, we rely on a type system for binary sessions which is simple and enables an expressive analysis
of global types. Coppo et al. [7, 21, 22] give type systems for multiparty protocols, with asynchrony and
support for interleaved sessions by tracking of mutual dependencies between them; as per Toninho and
Yoshida [53], our example in Section 5.1 is typable in APCP but untypable in their system. Padovani
et al. [46] develop a type system that enforces liveness properties for multiparty sessions, defined on
top of a π-calculus with labeled communication. Rather than global types, their type structure follows
approaches based on conversation types [16]. Toninho and Yoshida [53] analyze binary sessions, leveraging
on deadlock-freedom results for multiparty sessions to extend Wadler’s CLL [57] with cyclic networks.
Their process language is synchronous and uses replication rather than recursion. We note that their
Examples 6.8 and 6.9 can be typed in APCP (cf. § 5.1); a detailed comparison between their extended
CLL and APCP is interesting future work.

MPST and Binary Analyses of Global Types There are many works on MPST and their integra-
tion into programming languages; see [40, 3] for surveys. Triggered by flawed proofs of type safety and
limitations of usual theories, Scalas and Yoshida [51] define a meta-framework of multiparty protocols
based on local types, without global types and projection. Their work has been a source of inspiration
for our developments; we address similar issues by adopting relative types, instead of cutting ties with
global types.

As already mentioned, Caires and Pérez [12] and Carbone et al. [17] reduce the analysis of global types
to binary session type systems based on intuitionistic and classical linear logic, respectively. Our routers
strictly generalize the centralized mediums of Caires and Pérez (cf. § 4.4). We substantially improve
over the expressivity of the decentralized approach of Carbone et al. based on coherence, but reliant
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on encodings into centralized arbiters; for instance, their approach does not support the example from
Toninho and Yoshida [53] we discuss in § 5.1. Also, Caires and Pérez support neither recursive global
types nor asynchronous communication, and neither do Carbone et al..

Scalas et al. [50] leverage on an encoding of binary session types into linear types [24, 43] to reduce
multiparty sessions to processes typable with linear types, with applications in Scala programming. Their
analysis is decentralized but covers processes with synchronous communication only; also, their deadlock-
freedom result is limited with respect to ours: it does not support interleaving, such as in the example
in § 5.1.

Monitoring through MPST Our work and the works discussed so far all consider the verification
of implementations of multiparty protocols through static type checking. Bocchi et al. [8] use a dynamic
approach: communication between implementations is enacted by monitors, which are derived from
the global type to prevent protocol violations. In their approach, Bocchi et al. rely on the traditional
workflow for MPST: projection onto binary session types based on the merge operation. Interestingly,
Bocchi et al.’s semantics relies on routing, which is similar in spirit, but not in details, to our routers:
their routing approach abstracts away from the actual network structure, while our routers enable the
concrete realization of a decentralized network structure. We also note that Bocchi et al.’s monitors,
based on finite state machines, live on the level of semantics, while our routers, π-calculus processes,
live on the same level as implementations. The theory by Bocchi et al. has resulted in the development
of tools for a practical application of monitoring in Python [27], including an extension to real-time
systems [45].

Other Approaches to Multiparty Protocols In a broader context, Message Sequence Charts
(MSCs) provide graphical specifications of multiparty protocols. Alur et al. [2] and Abdallah et al. [1]
study the decidability of model-checking properties such as implementability of MSC Graphs and High-
level MSCs (HMSCs) as Communicating FSMs (CFSMs). Genest et al. [34] study the synthesis of
implementations of HMSCs as CFSMs; as we do, they use extra synchronization messages in some cases.
We follow an entirely different research strand: our analysis is type-based and targets well-formed global
types that are implementable by design. We note that the decidability of key notions for MPST (such
as well-formedness and typability) has been addressed in [38].

Collaboration diagrams are another visual model for communicating processes (see, e.g. [10]). Salaün
et al. [49] encode collaboration diagrams into the LOTOS process algebra [30] to enable model-checking [32],
realizability checks for synchronous and asynchronous communication, and synthesis of participant im-
plementations. Their implementation synthesis is reminiscent of our router synthesis, and also adds extra
synchronization messages to realize otherwise unrealizable protocols with non-local choices.

7 Conclusion
We have developed a new analysis of multiparty protocols specified as global types. As a distinguishing
feature, our analysis accounts for multiparty protocols implemented by arbitrary process networks, which
can be centralized (as in orchestration-based approaches) but also decentralized (as in choreography-
based approaches). Another salient feature is that we can ensure both protocol conformance (protocol
fidelity, communication safety) and deadlock-freedom, which is notoriously hard to establish for pro-
tocols/implementations involving delegation and interleaving. To this end, we have considered asyn-
chronous process implementations in APCP, the typed process language that we introduced in [54]. Our
analysis enables the transference of correctness properties from APCP to multiparty protocols. We have
illustrated these features using the authorization protocol Gauth adapted from Scalas and Yoshida [51] as
a running example; additional examples further justify how our approach improves over previous analyses
(cf. Section 5).

Our analysis of multiparty protocols rests upon three key innovations: routers, which enable global
type analysis as decentralized networks; relative types that capture protocols between pairs of partici-
pants; relative projection, which admits global types with non-local choices. In our opinion, these notions
are interesting on their own. In particular, relative types shed new light on more expressive protocol
specifications than usual MPST, which are tied to notions of local types and merge/subtyping.
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There are several interesting avenues for future work. Comparing relative and merge-based well-
formedness would continue the tread of new projections of global types (cf. App. A for initial findings).
We would also like to develop a type system based on relative types, integrating the logic of routers
into a static type checking that ensures deadlock-freedom for processes. Finally, we are interested in
developing practical tool support based on our findings. For this latter point, following [42], we would
like to first formalize a theory of runtime monitoring based on routers, which can already be seen as an
elementary form of choreographed monitoring (cf. [31]).
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A Comparing Merge-based Well-formedness and Relative Well-
formedness

It is instructive to examine how the notion of well-formed global types induced by our relative projection
compares to merge-based well-formedness, the notion induced by (usual) local projection [39, 18].

Before we recall the definition of merge-based well-formedness, we define the projection of global
types to local types. Local types express one particular participant’s perspective of a global protocol.
Although skip is not part of standard definitions of local types, we include it to enable a fair comparison
with relative types.

Definition 42 (Local types). Local types L are defined as follows, where the Si are the message types
from Def. 12:

L ::= ?p{i〈S〉 . L}i∈I | !p{i〈S〉 . L}i∈I | µX . L | X | • | skip . L
The local types ?p{i〈Si〉 . Li}i∈I and !p{i〈Si〉 . Li}i∈I represent receiving a choice from p and sending

a choice to p, respectively. All of •, µX . L, X, and skip are just as before.
Instead of external dependencies, the projection onto local types relies on an operation on local types

called merge. Intuitively, merge allows combining overlapping but not necessarily identical receiving
constructs. This is one main difference with respect to our relative projection.

Definition 43 (Merge of Local Types). For local types L1 and L2, we define L1 t L2 as the merge of
L1 and L2:

skip . L1 t skip . L2 := L1 t L2 • t • := •
µX . L1 t µX . L2 := µX . (L1 t L2) X tX := X

!p{i〈Si〉 . Li}i∈I t !p{i〈Si〉 . Li}i∈I := !p{i〈Si〉 . Li}i∈I

?p{i〈Si〉 . Li}i∈I t ?p{j〈S′j〉 . L′j}j∈J := ?p

 {i〈Si〉 . Li}i∈I\J
∪ {j〈S′j〉 . L′j}j∈J\I
∪ {k〈Sk t S′k〉 . (Lk t L′k)}k∈I∩J


The merge between message types S1 t S2 corresponds to the identity function. If the local types do not
match the above definition, their merge is undefined.

We can now define local projection based on merge:

Definition 44 (Merge-based Local Projection). For global type G and participant p, we define G � p as
the merge-based local projection of G under p:

• � p := • (skip . G) � p := skip . (G � p) X � p := X

(µX . G) � p :=

{
• if G � p = skip∗ . • or G � p = skip∗ . X

µX . (G � p) otherwise

(r� s{i〈Ui〉 . Gi}i∈I) � p :=


?r{i〈Ui〉 . (Gi � p)}i∈I if p = s

!s{i〈Ui〉 . (Gi � p)}i∈I if p = r

skip . (ti∈I(Gi � p)) otherwise

(G1 |G2) � p :=


G1 � p if p ∈ prt(G1) and p /∈ prt(G2)

G2 � p if p ∈ prt(G2) and p /∈ prt(G1)

• if p /∈ prt(G1) ∪ prt(G2)

Definition 45 (Merge Well-Formedness). A global type G is merge well-formed if, for every p ∈ prt(G),
the merge-based local projection G � p is defined.

The classes of relative and merge-based well-formed global types overlap: there are protocols that can
be expressed using dependencies in relative types, as well as using merge in local types. Interestingly,
the classes are incomparable: some relative well-formed global types are not merge-based well-formed,
and vice versa. We now explore these differences.
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A.1 Relative Well-Formed, Not Merge Well-Formed
The merge of local types with outgoing messages of different labels is undefined. Therefore, if a global
type has communications, e.g., from s to a with different labels across branches of a prior communication
between b and a, the global type is not merge well-formed. In contrast, such global types can be relative
well-formed, because the prior communication may induce a dependency. Similarly, global types with
communications with different participants across branches of a prior communication are never merge
well-formed, but may be relative well-formed. The following example demonstrates a global type with
messages of different labels across branches of a prior communication:

Example. We give an adaptation of the two-buyer-seller protocol in which Seller (s) tells Alice (a) to
pay or not, depending on whether Bob (b) tells a to buy or not.

Grwf := b� a

{
ok . s� a : pay〈int〉 . •,
cancel . s� a : cancel . •

}
This protocol is relative well-formed, as the relative projections under every combination of participants
are defined. Notice how there is a dependency in the relative projection under s and a:

Grwf � (s, a) = a?b

{
ok . s : pay〈int〉 . •,
cancel . s : cancel . •

}
However, we do not have merge well-formedness: the merge-based local projection under s is not defined:

Grwf � s = skip . (!a : pay〈int〉 . • t !a : cancel . •)

A.2 Merge Well-Formed, Not Relative Well-Formed
For a communication between, e.g., a and b to induce a dependency for subsequent communications
between other participants, at least one of a and b must be involved. Therefore, global types where
communications with participants other than a and b have different labels across branches of a prior
communication between a and b are never relative well-formed. In contrast, merge can combine the
reception of different labels, so such global types may be merge well-formed—as long as the sender is
aware of which branch has been taken before. The following example demonstrates such a situation, and
explains how such global types can be modified to be relative well-formed:

Example. Consider a variant of the two-buyer-seller protocol in which Seller (s) invokes a new partic-
ipant, Mail-service (m), to deliver the requested product. In the following global type, Bob (b) tells Alice
(a) of its decision to buy or not, after which b sends the same choice to s, who then either invokes m to
deliver the product or not:

Gmwf := b� a

{
ok . b� s : ok . s�m : deliver〈str〉 . •,
quit . b� s : quit . s�m : quit . •

}
Gmwf is merge well-formed: the merge-based local projections under all participants are defined. Notice
how the two different messages from s are merged in the merge-based local projection under m:

Gmwf �m = skip2 . ?s

{
deliver〈str〉 . •,
quit . •

}
Gmwf is not relative well-formed: the relative projection under s and m is not defined. The initial
exchange between b and a cannot induce a dependency, since neither of s and m is involved. Hence, the
relative projections of both branches must be identical, but they are not:

skip . s : deliver〈str〉 . • 6= skip . s : quit . •

We recover relative well-formedness by modifying Gmwf : we give s the same options to send to m in
both branches of the initial communication:

G′mwf := b� a

{
ok . b� s : ok . s�m{deliver〈str〉 . •, quit . •},
quit . b� s : quit . s�m{deliver〈str〉 . •, quit . •}

}
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The new protocol is still merge well-formed, but it is now relative well-formed too; the relative projection
under s and m is defined:

G′mwf � (s,m) = skip2 . s

{
deliver〈address〉 . •,
quit . •

}
This modification may not be ideal, though, because s can quit the protocol even if b has ok’ed the
transaction, and that s can still invoke a delivery even if b has quit the transaction.
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