
Linear Logical Relations and Observational Equivalences for
Session-Based Concurrency

Jorge A. Péreza,∗, Luı́s Cairesb, Frank Pfenningc, Bernardo Toninhob,c

aJohann Bernoulli Institute for Mathematics and Computer Science, University of Groningen
bCITI, NOVA LINCS and Departamento de Informática, FCT Universidade Nova de Lisboa

cComputer Science Department, Carnegie Mellon University

Abstract

We investigate strong normalization, confluence, and behavioral equality in the realm of session-based con-
currency. These interrelated issues underpin advanced correctness analysis in models of structured commu-
nications. The starting point for our study is an interpretation of linear logic propositions as session types for
communicating processes, proposed in prior work. Strong normalization and confluence are established by
developing a theory of logical relations. Defined upon a linear type structure, our logical relations remain
remarkably similar to those for functional languages. We also introduce a natural notion of observational
equivalence for session-typed processes. Strong normalization and confluence come in handy in the as-
sociated coinductive reasoning: as applications, we prove that all proof conversions induced by the logic
interpretation actually express observational equivalences, and explain how type isomorphisms resulting
from linear logic equivalences are realized by coercions between interface types of session-based concurrent
systems.

Keywords: Session Types, Linear Logic, Process Calculi, Strong Normalization, Confluence, Logical
Relations, Observational Equivalences

1. Introduction

Modern computing systems rely heavily on the communication between distributed software artifacts.
Hence, to a large extent, guaranteeing system correctness amounts to ensuring consistent dialogues between
such artifacts. This is a challenging task, given the complex interaction patterns that communicating systems
usually feature. Session-based concurrency provides a foundational approach to communication correctness:
concurrent dialogues are structured into basic units called sessions; descriptions of the interaction patterns
are then abstracted as session types [22, 23, 17], which are statically checked against specifications. These
specifications are usually given in the π-calculus [31, 42], and so we obtain processes interacting on so-
called session channels which connect exactly two subsystems. The discipline of session types ensures
protocols in which actions always occur in dual pairs: when one partner sends, the other receives; when one
partner offers a selection, the other chooses; when a session terminates, no further interaction may occur.

∗Corresponding author
Email addresses: j.a.perez@rug.nl (Jorge A. Pérez), lcaires@fct.unl.pt (Luı́s Caires), fp@cs.cmu.edu (Frank

Pfenning), btoninho@cs.cmu.edu (Bernardo Toninho)

Preprint submitted to Elsevier April 9, 2015

New sessions may be dynamically created by invoking shared servers. While concurrency arises in the
simultaneous execution of sessions, mobility results from the exchange of session and server names.

The goal of this paper is to investigate strong normalization, confluence, and typed behavioral equiva-
lences for session-typed, communicating processes. These interrelated issues underpin advanced correctness
analysis in models of structured communications. Our study builds upon the interpretation of linear logic
propositions as session types put forward by Caires and Pfenning in [11]. In a concurrent setting, such an
interpretation defines a tight propositions-as-types/proofs-as-programs correspondence, in the style of the
Curry-Howard isomorphism for the simply-typed λ-calculus [24]. In the interpretation, types (linear logic
propositions) are assigned to names (communication channels) and describe their session protocol; typing
rules correspond to linear sequent calculus proof rules and processes correspond to proof objects in logic
derivations. Moreover, process reduction may be simulated by proof conversions and reductions, and vice
versa. As a result, typed processes enjoy strong forms of subject reduction (type preservation) and global
progress (deadlock-freedom). While the former states that well-typed processes always evolve to well-typed
processes (a safety property), the latter says that well-typed processes will never get into a stuck state (a live-
ness property). These strong correctness properties make the framework in [11] a convenient basis for our
study of strong normalization, confluence, and behavioral equivalences. Well-studied in sequential settings,
these three interrelated issues constitute substantial challenges for theories of communicating processes, as
we motivate next.

In typed functional calculi, strong normalization ensures that well-typed terms do not have infinite re-
duction sequences. Types rule out divergent computations; termination of reduction entails consistency of
the corresponding logical systems. In the realm of communicating processes, reduction captures atomic
synchronization; associated behavioral types exclude unintended structured interactions. As a result, strong
normalization acquires an enhanced significance in a concurrent setting. In fact, even if subject reduction
and progress are typically regarded as the key correctness guarantees for processes, requiring strongly nor-
malizing behaviors is also most sensible: while from a global perspective systems are meant to run forever,
at a local level we wish responsive participants which always react within a finite amount of time, and
never engage into infinite internal behavior. For instance, in server-client applications it is critical for clients
to be sure that running code provided by the server will not cause them to get stuck indefinitely (as in a
denial-of-service attack, or just due to some bug).

Closely related to strong normalization, confluence is another appealing property. In a communication-
based setting, confluence would strengthen correctness guarantees by ensuring predictability of structured
interactions. This benefit may be more concretely seen by considering the principle of typed process com-
position derived from the logic interpretation. In [11], typing judgments specify both the session behavior
that a process offers (or implements) and the set of (unrestricted and linear) behaviors that it requires to do
so. For instance, the judgment

u:B ; x1:A1, . . . , xn:An ` P :: z:C (1)

specifies a process P which offers behavior C along name z by making use of an unrestricted behavior B (a
replicated server, available on name u) and of linear behaviors A1, . . . , An (offered on names x1, . . . , xn).
A process implementing one of these linear dependencies could be specified by the judgment

· ; · ` S1 :: x1:A1 (2)

which says that process S1 does not depend on any linear or unrestricted session behaviors to offer behavior
A1 along name x1. We write ‘ · ’ to denote the empty set of dependencies. Given a typed interface such as
(1), to satisfy each of the declared behavioral dependencies we need to first (i) compose the given process

2

with another one which realizes the required behavior, and then (ii) restrict the name in which the behavior
is required/offered, to avoid interferences. As a result, the interactions between the given process and the
processes implementing its dependencies are unobservable. In the case of (1) and (2) above we would obtain
the following typed composition:

u:B ; x2:A2, . . . , xn:An ` (νx1)(S1 | P) :: z:C (3)

Hence, interactions on name x1 become unobservable in the resulting composed process; its set of depen-
dencies combines those of P (excepting x1:A1) and those of S1 (in this case, the empty set). From (3) we
could proceed similarly for all the behaviors declared in the left-hand side, thus obtaining a typed process
without dependencies:

· ; · ` (νm̃)(!u(y).R | S1 | · · · | Sn | P) :: z:C (4)

with m̃ = u, x1, . . . , xn and · ; · ` R :: y:B. In the above process, all behavioral dependencies arise as
internal reductions; the only visible behavior takes place on name z. Notice that processes R,S1, . . . , Sn
may well have internal behavior on their own. For processes such as the one in (4), the interplay of con-
fluence with strong normalization would be significant, as it could crucially ensure that session behavior as
declared by judgments in the right-hand side (z:C in this case) will be always offered, independently from
any arbitrary interleaving of internal reductions from different sources.

Now, in sharp contrast to the normalizing, confluent nature of computation in many typed functional
calculi, process calculi are inherently non-terminating, non-confluent models of concurrent computation.
Hence, unsurprisingly, ensuring strong normalization and confluence in calculi for concurrency is a hard
problem: in (variants of) the π-calculus, proofs require heavy constraints on the language and/or its types,
often relying on ad-hoc machineries (see [15] for a survey on termination in process calculi). As a first
challenge, we wonder: building upon our linear type structure, directly obtained from the Curry-Howard
correspondence in [11], can we establish useful forms of strong normalization and confluence for session-
typed, communicating processes?

While from an operational standpoint strong normalization and confluence are relevant, at a more foun-
dational level they are also related to notions of typed equality. For instance, in the simply-typed λ-calculus,
strong normalization and confluence ensure that normal forms exist and are unique, and entail decidabil-
ity of denotational equality. In our concurrent setting, strong normalization is also related to behavioral
equivalence —arguably the most basic notion in a theory of processes. Behavioral equivalences enable us
to formally assert when two process terms denote the “same behavior”. A first, basic connection between
strong normalization, confluence, and behavioral equivalence is obtained by means of subject reduction/type
preservation: process behavior (as declared by typing judgments) is preserved along arbitrary reduction
steps. Building upon this connection, any notion of behavioral equality over session-typed processes should
be necessarily informed by the correspondence between session types and linear logic propositions. As de-
tailed in [11], such a correspondence is realized by relating proof conversions in linear logic with appropriate
notions in the process setting. Interestingly, by virtue of such proof conversions the correspondence already
induces a notion of typed process equality. As illustration, consider the following process equalities, two
instances of proof conversions:

(νx)(P | z(y).(Q | R)) 'c z(y).((νx)(P | Q) | R) (5)
x(y).z(w).P 'c z(w).x(y).P (with x 6= z) (6)

In our framework, equality (5) results from the interplay of typed constructs for (bound) output (on name z)
and process composition, whereas (6) arises from the typing of two independent sessions (on names x and
z). Crucially, in both cases, the equated processes are syntactically very different and yet they are associated

3

to the same typing judgment —that is, their typed session interface decrees the same behavior. As a second
challenge, we ask: can we define a notion of typed process equality that is both natural and intuitive, that
enjoys good properties (e.g., congruence), and that captures the notion of equality that is already induced by
the logic interpretation via proof conversions?

A clear understanding of the status of strong normalization, confluence, and process equalities would
provide a fundamental stepping stone towards a deeper understanding on how session types delineate com-
munications. That is, basic behavioral equivalences over equally typed processes (in which strong normal-
ization and confluence are expected to play substantial roles) may also provide a basis for reasoning about
the behavior of processes with different types. In fact, given that session types represent service interfaces
of distributed software artifacts, it is legitimate to ask whether the logic interpretation enables reasoning
techniques at the level of session types. Such techniques appear very useful from a pragmatic perspective
—for instance, they could enable natural notions of interface compatibility. Reasoning techniques at the
level of types would also be useful from the more foundational standpoint of typed equality. To illustrate
this, let us consider the session-typed interpretation of ⊗ given in [11], whereby an object of type A ⊗ B
denotes a session that first outputs a channel of typeA and then behaves asB. This intuitive description may
suggest an asymmetric interpretation, as opposed to the well-known symmetric nature of ⊗. This apparent
asymmetry is already clarified in [11]: using a suitable typed process, it is shown how a session of type
A⊗B may be coerced into one of type B ⊗A (and viceversa). This justification, however, leaves open the
general issue of equality over session types. In fact, we wish to understand the formal meaning in our setting
of a notion of typed equality, in such a way that expected logic principles such as

A⊗B ' B ⊗A (7)

are properly justified. A final challenge would be then: building upon typed process equivalences, can we
derive a simple notion of equality over session types that justifies/validates principles such as (7) above but
also arbitrary interface transformations?

With the aim of addressing the challenges described above, the present paper offers the following technical
contributions:

(1) We present a simple theory of logical relations for session-typed processes, and use it to show that
well-typed processes are both strongly normalizing and confluent.

The method of logical relations [43, 44] has proved to be extremely productive in the functional set-
ting; properties such as strong normalization and parametricity can be established via logical relations.
Although the logic interpretation in [11] assigns types to names (and not to terms, as in the typed λ-
calculus), quite remarkably, our linear logical relations are truly defined on the structure of types—as in
logical relations for the typed λ-calculus [43, 44]. This allows for simple proofs of strong normalization
and confluence, which follow closely the principles of the (linear) type system. To our knowledge, ours
are the first proofs of their kind in the context of session-based concurrency.

(2) We investigate a behavioral theory for session-typed processes, defined as a typed contextual equiva-
lence which follows the principles of the logical interpretation.

Well-studied in the untyped case, behavioral equivalences have been only little studied for session-typed
processes (in fact, the only previous work we are aware of in the binary setting is [27]). We introduce
typed context bisimilarity, a natural notion of observational equivalence for typed processes. We show
how, thanks to the combination of type preservation, progress, strong normalization, and confluence,

4

typed context bisimilarity satisfies τ -inertness, as studied by Groote and Sellink [20]. Intuitively, τ -
inertness says that reduction (internal behavior) does not change process behavior. This is most relevant
for verification, as it means that our well-typed processes can perform arbitrarily many reductions while
remaining in the same equivalence class. In our setting, this guarantee is neatly complemented by strong
normalization, which ensures finitely many reductions.

(3) By relying on the above results, we then develop two applications, which clarify further the nature of
the logical interpretation of session types put forward in [11]:

− We prove that proof conversions are sound with respect to observational equivalence. This way,
processes equalities induced by proof conversions (such as (5) and (6) above) correspond to typed
context bisimilarities. This soundness result elegantly explains subtle forms of causality that arise in
the execution of concurrent sessions.

− Building upon typed bisimilarity, we offer a characterization of type isomorphisms (see, e.g., [18]).
Intuitively, such isomorphisms result from linear logic equivalences which are realized by process
coercions. Our characterization allows us to show that principles such as (7) above are indeed iso-
morphisms.

Our applications thus shed further light on the relationship between linear logic and structured com-
munications. Strong normalization and confluence properties are central in the associated coinductive
reasoning, intuitively because in the bisimulation game strong transitions are always matched by weak
transitions with finite and confluent internal behavior.

Organization. Next, in Section 2, we present our process model, a synchronous π-calculus with guarded
choice. Section 3 recalls the type system derived from the logical interpretation and main results from [11].
Section 4 presents proof conversions, describing inference permutability issues derived from the logical
interpretation. Section 5 presents linear logical relations for typed processes, as well as the proof of strong
normalization and confluence. Section 6 introduces typed context bisimilarity and studies its main properties.
Section 7 presents our two applications. Finally, Section 8 discusses related work, and Section 9 collects
some final remarks. A number of proofs and technical details have been moved to the Appendix.

This paper is an extended version of the conference paper [34]. In this presentation, we provide full
technical details and include some new material: Section 4, on proof conversions; Section 5.3, on a proof of
confluence via linear logical relations; and the proof of τ -inertness given in Section 6.

2. Process Model: Syntax and Semantics

We introduce the syntax and operational semantics of the synchronous π-calculus [42] extended with
(binary) guarded choice.

Definition 2.1 (Processes). Given an infinite set Λ of names (ranged over x, y, z, u, v), the set of processes
(ranged over P,Q,R) is defined by

P ::= 0 | P | Q | (νy)P | x y.P | x(y).P | !x(y).P
| [x↔y] | x.inl;P | x.inr;P | x.case(P,Q)

The operators 0, P | Q, and (νy)P comprise the static fragment of any π-calculus: they represent
inaction, parallel composition, and name restriction, respectively. We then have prefixed processes x y.P
and x(y).P : while the former denotes a process which sends name y on x and then proceeds as P , the

5

Figure 1 Process Reduction

x〈y〉.Q | x(z).P → Q | P{y/z} x.inr;P | x.case(Q,R)→ P | R
x〈y〉.Q | !x(z).P → Q | P{y/z} | !x(z).P x.inl;P | x.case(Q,R)→ P | Q
(νx)([x↔y] | P)→ P{y/x} (y 6∈ fn(P)) P → Q⇒ (νy)P → (νy)Q
P ≡ P ′, P ′ → Q′, Q′ ≡ Q⇒ P → Q Q→ Q′ ⇒ P | Q→ P | Q′

latter denotes a process which receives a name z on x, and then proceeds as P with parameter y replaced by
z. Process !x(y).P denotes replicated (persistent) input. Following [40], we write x(y) as an abbreviation
for (νy)x y. The forwarding construct [x ↔ y] equates names x and y; it is a primitive representation
of a copycat process, akin to the link processes used in internal mobility encodings of name-passing [5].
As described in Section 3, this construct allows for a simple identity axiom in the type system [45]. The
remaining three operators define a minimal labeled choice mechanism, comparable to the n-ary branching
constructs found in standard session π-calculi (see, e.g., [23]). Without loss of generality we restrict our
model to binary choice. In restriction (νy)P and input x(y).P the distinguished occurrence of name y is
binding, with scope P .

The set of free names of a process P is denoted by fn(P). A process is closed if it does not contain
free occurrences of names. We identify process up to consistent renaming of bound names, writing ≡α for
this congruence. We write P{x/y} for the capture-avoiding substitution of x for y in P . While structural
congruence expresses basic identities on the structure of processes, reduction expresses the behavior of
processes.

Definition 2.2. Structural congruence (P ≡ Q) is the least congruence relation on processes such that

P | 0 ≡ P P ≡α Q⇒ P ≡ Q
P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R
(νx)0 ≡ 0 x 6∈ fn(P)⇒ P | (νx)Q ≡ (νx)(P | Q)
(νx)(νy)P ≡ (νy)(νx)P [x↔y] ≡ [y↔x]

Definition 2.3. Reduction (P → Q) is the binary relation on processes defined by the rules in Figure 1.

By definition, reduction is closed under ≡. It specifies the computations a process performs on its own.
To define the interactions of a process with its environment, we extend the early transition system for the π-
calculus [42] with labels and transition rules for the choice and forwarding constructs. A transition P α−→ Q
denotes that P may evolve to Q by performing the action represented by label α. Labels are given by:

α ::= x(y) | x y | x(y) | x.inl | x.inl | x.inr | x.inr | τ

Actions are input x(y), the left/right offers x.inl and x.inr, and their matching co-actions, respectively, the
free output x y and bound output x(y) actions, and the left/ right selections x.inl and x.inr. The bound output
x(y) denotes extrusion of a fresh name y along x. Internal action is denoted by τ . In general, an action α
(resp. α) requires a matching α (resp. α) in the environment to enable progress, as specified by the transition
rules. For a label α, we define the sets fn(α) and bn(α) of free and bound names, respectively, as usual. We
denote by s(α) the subject of α (e.g., x in x(y)).

Definition 2.4 (Labeled Transition System). The relation labeled transition (P α→ Q) is defined by the rules
in Figure 2, together with the symmetric versions of rules (par), (com), and (close).

6

Figure 2 π-calculus Labeled Transition System.
(out)

x y.P
x y−−→ P

(in)

x(y).P
x(z)−−−→ P{z/y}

(id)
(νx)([x↔y] | P)

τ−→ P{y/x}

(par)
P

α−→ Q bn(α) ∩ fn(R) = ∅
P | R α−→ Q | R

(com)

P
α−→ P ′ Q

α−→ Q′

P | Q τ−→ P ′ | Q′

(res)
P

α−→ Q y 6∈ fn(α)

(νy)P
α−→ (νy)Q

(open)

P
x y−−→ Q

(νy)P
x(y)−−−→ Q

(close)

P
x(y)−−−→ P ′ Q

x(y)−−−→ Q′ y 6∈ fn(Q)

P | Q τ−→ (νy)(P ′ | Q′)

(rep)

!x(y).P
x(z)−−−→ P{z/y} | !x(y).P

(lout)

x.inl;P
x.inl−−→ P

(rout)

x.inr;P
x.inr−−−→ P

(lin)

x.case(P,Q)
x.inl−−→ P

(rin)

x.case(P,Q)
x.inr−−−→ Q

Hence, rules in Figure 2 extend standard rules for the π-calculus with rules for the forwarding construct
(cf. rule (id)) and the labeled choice operator (cf. rules (lout), (rout), (lin), and (rin)). Weak transitions are
also defined as usual. Let us write =⇒ for the reflexive, transitive closure of τ−→ and ρ1ρ2 for the composition
of relations ρ1, ρ2. Given α 6= τ , notation α

=⇒ stands for =⇒ α−→=⇒ and τ
=⇒ stands for =⇒.

We close this section by recalling some basic facts about reduction, structural congruence, and labeled
transition, namely closure of labeled transitions under structural congruence, and coincidence of τ -labeled
transition and reduction:

Proposition 2.1 ([42]). Let P be a π-calculus process.

(1) If P ≡ α−→ Q then P α−→≡ Q

(2) P → Q if and only if P τ−→≡ Q.

3. Session Types as Intuitionistic Linear Logic Propositions

As anticipated in the introduction, the type structure coincides with intuitionistic linear logic [19, 2],
omitting atomic formulas and the additive constants > and 0.

Definition 3.1 (Types). Types (A,B,C) are given by

A,B ::= 1 | !A | A⊗B | A(B | A N B | A⊕B

Types are assigned to (session) channels/names, and are interpreted as a form of session types; an assign-
ment x:A enforces the use of name x according to discipline A. We use A ⊗ B to type a channel that first
performs an output to its partner (sending a session channel of type A) before proceeding as specified by B.
Similarly, A(B types a channel that first performs an input from its partner (receiving a session channel of
type A) before proceeding as specified by B. Type 1 represents a terminated session, no further interaction
will take place on it; names of type 1 may still be passed around in sessions, as opaque values. ANB types

7

Figure 3 The Type System πDILL.
(Tid)

Γ;x:A ` [x↔z] :: z:A

(T1L)
Γ; ∆ ` P :: T

Γ; ∆, x:1 ` P :: T

(T1R)

Γ; · ` 0 :: x:1

(T⊗L)
Γ; ∆, y:A, x:B ` P :: T

Γ; ∆, x:A⊗B ` x(y).P :: T

(T⊗R)
Γ; ∆ ` P :: y:A Γ; ∆′ ` Q :: x:B

Γ; ∆,∆′ ` x(y).(P | Q) :: x:A⊗B

(T(L)
Γ; ∆ ` P :: y:A Γ; ∆′, x:B ` Q :: T

Γ; ∆,∆′, x:A(B ` x(y).(P | Q) :: T

(T(R)
Γ; ∆, y:A ` P :: x:B

Γ; ∆ ` x(y).P :: x:A(B

(Tcut)
Γ; ∆ ` P :: x:A Γ; ∆′, x:A ` Q :: T

Γ; ∆,∆′ ` (νx)(P | Q) :: T

(Tcut!)
Γ; · ` P :: y:A Γ, u:A; ∆ ` Q :: T

Γ; ∆ ` (νu)(!u(y).P | Q) :: T

(T!L)
Γ, u:A; ∆ ` P{u/x} :: T

Γ; ∆, x:!A ` P :: T

(Tcopy)
Γ, u:A; ∆, y:A ` P :: T

Γ, u:A; ∆ ` u(y).P :: T

(T!R)
Γ; · ` Q :: y:A

Γ; · ` !x(y).Q :: x:!A

(T⊕L)
Γ; ∆, x:A ` P :: T Γ; ∆, x:B ` Q :: T

Γ; ∆, x:A⊕B ` x.case(P,Q) :: T

(TNR)
Γ; ∆ ` P :: x:A Γ; ∆ ` Q :: x:B

Γ; ∆ ` x.case(P,Q) :: x:ANB

(TNL1)
Γ; ∆, x:A ` P :: T

Γ; ∆, x:ANB ` x.inl;P :: T

(T⊕R1)
Γ; ∆ ` P :: x:A

Γ; ∆ ` x.inl;P :: x:A⊕B

(TNL2)
Γ; ∆, x:B ` P :: T

Γ; ∆, x:ANB ` x.inr;P :: T

(T⊕R2)
Γ; ∆ ` P :: x:B

Γ; ∆ ` x.inr;P :: x:A⊕B

a channel that offers its partner a choice between an A behavior (“left” choice) and a B behavior (“right”
choice). Dually, A⊕B types a session that either selects “left” and then proceeds as specified by A, or else
selects “right”, and then proceeds as specified by B. Type !A types a shared (non-linear) channel, to be used
by a server for spawning an arbitrary number of new sessions (possibly none), each one conforming to type
A.

A type environment is a set of type assignments of the form x:A, where A is a type and x is a name,
the names being pairwise disjoint. Type environments may be subject to different structural principles.
There are at least three sensible principles. The first one, exchange, indicates that the ordering of type
assignments does not matter. The second principle, weakening, says that type assignments need not be used.
Finally, the contraction principle says that type assignments may be duplicated. We write ∆ for the linear
type environment, subject only to exchange; we write Γ for the unrestricted type environment, subject to
exchange, weakening, and contraction principles.

8

A type judgment is of the form
Γ; ∆ ` P :: z:C (8)

where name declarations in Γ are always propagated unchanged to all premises in the typing rules, while
name declarations in ∆ are handled multiplicatively or additively, depending on the nature of the connective
being defined. The domains of Γ,∆ and z:C are required to be pairwise disjoint. The judgment in (8)
asserts: P is ensured to safely provide a usage of name z according to the behavior specified by type C,
whenever composed with any process environment providing usages of names according to the behaviors
specified by assignments in Γ and ∆.

Our typing judgment defines an intuitive reading of processes. Given (8), process P represents a system
providing behavior C at channel z, building on “services” declared in Γ and ∆. This way, for instance,
a client Q that relies on external services and does not provide any would be typed as Γ; ∆ ` Q :: −:1,
where we write − to denote a “dummy name” that does not occur in Q. A system typed as Γ; ∆ ` R ::
z:!A represents a shared server. Interestingly, the asymmetry induced by the intuitionistic interpretation of
!A enforces locality of shared names but not of linear (session names), which exactly corresponds to the
intended model of sessions.

Notation 3.1. When empty, environments Γ and ∆ are denoted by ‘·’. Also, we often use T for right-hand
side singleton environments (e.g., z:C). Furthermore, we sometimes write ` P :: T to stand for · ; · ` P :: T

We briefly comment on the rules that define the typing judgment, given in Figure 3. Rule (Tid) defines
identity in terms of the forwarding construct. The so-called left rules (marked with L) define how to use a
session of a given type, whereas the right rules (marked with R) define how to offer a session of a given type.
The type 1 which is associated with the lack of observable behavior is offered by the inactive process 0, as
specified in rule (T1R). Using such a session thus requires no behavior (rule T1L).

Offering a session of type x:A⊗B, as specified in rule (T⊗R), is achieved by performing the output of a
fresh name y along x, which will offer the session behavior A specified by P , after which Q will then offer
the session behavior x:B. Since in rule (T⊗R) the sent name is always fresh, our typed calculus conforms to
an internal mobility discipline [5, 40], without loss of expressiveness. Note how P and Q must use disjoint
sets of ambient sessions. Using a session of such a type is achieved by the corresponding input behavior.
The rules for(are dual to those of ⊗: offering x:A(B is achieved by performing an input of y along x,
after which y is used according to the session behavior A and x offers the session behavior B. Using such a
session is achieved by providing the appropriate output actions.

The cut rules (Tcut) and (Tcut!) define typed linear and unrestricted session composition, respectively.
They follow the “composition plus hiding” principle [1], extended to a name-passing setting. Other linear
typing rules for parallel composition are derivable—see [11]. Relevant to our current development is the
following derivable rule, defining independent parallel composition:

(INDCOMP)
Γ; ∆1 ` P :: − : 1 Γ; ∆2 ` Q :: T

Γ; ∆1,∆2 ` P | Q :: T

Rule (T!R) specifies that offering a session of type !A requires a replicated input along x, where each replica
will offer the behavior A along the received name (without using any linear sessions). Offering an external
choice, as specified by rule (TNR), is achieved by a case prefix, which waits for the choice, proceeding
accordingly. Using such a session is achieved by performing the appropriate selections (rules (TNL1) and
(TNL2)). The rules for internal choice ⊕ are dual.

We always consider processes modulo structural congruence; hence, typability is closed under≡ by def-
inition. πDILL enjoys the usual properties of equivariance, weakening, and contraction in Γ. The coverage

9

property also holds: if Γ; ∆ ` P :: z:A then fn(P) ⊆ Γ ∪ ∆ ∪ {z}. In the presence of type-annotated
restrictions (νx:A)P , as usual in typed π-calculi [42], type-checking is decidable.

Session type constructors thus correspond directly to intuitionistic linear logic connectives. By eras-
ing processes, typing judgments in πDILL correspond to DILL, a sequent formulation of Barber’s dual
intuitionistic linear logic [2, 13]. Below we informally recall this correspondence; see [11, 12] for details.

DILL is equipped with a faithful proof term assignment: sequents have the form

Γ; ∆ ` D : C (9)

where Γ is the unrestricted context, ∆ the linear context, C a formula (i.e., a type), and D the proof term
that faithfully represents the derivation of Γ; ∆ ` C. Given the parallel structure of the two systems, if
Γ; ∆ ` D : A is derivable in DILL then there is a process P and a name z such that Γ; ∆ ` P :: z:A is
derivable in πDILL. The converse also holds: if Γ; ∆ ` P :: z:A is derivable in πDILL there is a derivation
D that proves Γ; ∆ ` D : A. This correspondence is made explicit by a translation from faithful proof terms
to processes: given Γ; ∆ ` D : C, we write D̂z for the translation of D such that Γ; ∆ ` D̂z :: z:C.

More precisely, we have typed extraction: we write

Γ; ∆ ` D P :: z:A (10)

meaning “proof D extracts to P ”, whenever Γ; ∆ ` D : A and Γ; ∆ ` P :: z:A and P ≡ D̂z . Typed
extraction is unique up to structural congruence. As processes are related by structural and computational
rules, namely those involved in the definition of ≡ and →, derivations in DILL are related by structural
and computational rules, that express certain sound proof transformations that arise in cut-elimination. Re-
ductions generally take place when a right rule meets a left rule for the same connective, and correspond
to reduction steps in the process term assignment. Similarly, structural conversions in DILL correspond to
structural equivalences in the π-calculus, since they just change the order of cuts.

We now recall some results from [11, 12], on subject reduction (type preservation) and progress (deadlock-
freedom) for well-typed processes. For any P , define live(P) iff P ≡ (νñ)(π.Q | R), for some sequence
of names ñ, a process R, and a non-replicated guarded process π.Q.

Theorem 3.1 (Subject Reduction). If Γ; ∆ ` P :: z:A and P → Q then Γ; ∆ ` Q :: z:A.

Lemma 3.1. Let Γ; ∆ ` D P :: z:C. If live(P) then there is a Q such that either (1) P → Q, or (2)
P

α→ Q for α where s(α) ∈ (z,Γ,∆). Moreover, if C = !A for some A, then s(α) 6= z.

Theorem 3.2 (Progress). If ·; · ` P ::z:1 and live(P) then exists a Q such that P → Q.

We close this section recalling some other auxiliar results from [11, 12].

Lemma 3.2 (Action Characterization Lemmas, Excerpt). Let Γ; ∆ ` D P :: x:C. Then we have:

1. If P α→ Q and C = 1 then s(α) 6= x.

2. If P α→ Q and s(α) = x and C = A⊗B then α = x(y).

3. If P α→ Q and s(α) = x and C = A(B then α = x(y).

4. If P α→ Q and s(α) = x and C = ANB then α = x.inl or α = x.inr.

5. If P α→ Q and s(α) = x and C = A⊕B then α = x.inl or α = x.inr.

10

6. If P α→ Q and s(α) = x and C = !A then α = x(y).

Lemma 3.3 (Preservation Lemma, Output Case). Assume

• Γ; ∆1 ` D P :: x:A1 ⊗A2 with P
x(y)−−−→ P ′; and

• Γ; ∆2, x:A1 ⊗A2 ` E Q :: z:C with Q
x(y)−−−→Q′.

Then: Γ; ∆1,∆2 ` F R :: z : C for R ≡ (νy)(νx)(P ′ | Q′).

Lemma 3.4. Assume Γ; ∆ ` D P :: z:C and not live(P). Then

1. C = 1 or C = !C ′, for some C ′;

2. (xi : Ai) ∈ ∆ implies Ai = 1 or there is Bj with Ai =!Bj;

3. C = !C ′ implies P ≡ (νx̃)(!z(y).R | R′)

4. Inference Permutability and Proof Conversions

Derivations in DILL are related by structural and computational rules that express sound proof transfor-
mations that arise in cut-elimination. As mentioned in Section 3 (and detailed in [11]), in our interpretation
reductions and structural conversions in DILL correspond to reductions and structural congruence in the
π-calculus. There is, however, a group of conversions in DILL not considered in [11] and which do not cor-
respond to neither reduction or structural congruence in the process side. We call them proof conversions:
they induce a congruence on typed processes, denoted by 'c.

This section illustrates proof conversions and their associated π-calculus processes. Figure 4 presents
a sample of process equalities extracted from them; the full list is reported in Appendix D. Each equality
P 'c Q in the figure is associated to appropriate right- and left-hand side typings; this way, e.g., equality
(24) in Figure 4—related to two applications of rule (T⊗L) —could be stated as

Γ; ∆, x:A⊗B, z:C ⊗D ` x(y).z(w).P 'c z(w).x(y).P :: T

where Γ and ∆ are environments, A,B,C,D are types, and T is a right-hand side typing. For the sake of
illustration, however, in Figure 4 these typings are elided, as we would like to stress on the consequences of
conversions on the process side. Proof conversions describe the interplay of two rules in a type-preserving
way: regardless of the order in which the two rules are applied, they lead to typing derivations with the same
right- and left-hand side typings, but with syntactically different processes.

We first formally introduce the set of process equalities induced by proof conversions. Then, we provide
intuitions about how such conversions arise in our setting.

Definition 4.1 (Proof Conversions). We define 'c as the least congruence on processes induced by the
process equalities in Figures D.6, D.7, D.8, and D.9 (Pages 67–70).

We classify proof conversions into five classes, denoted by (A)–(E):

(A) Permutations between rule (Tcut) and a right or left rule. This class of conversions represents the
interaction of a process offering a serviceC on x, with some process requiring such service; this process

11

Figure 4 A sample of process equalities induced by proof conversions (cf. Def. 4.1)

(νx)(D̂ | z(y).(Ê | F̂)) 'c z(y).((νx)(D̂ | Ê) | F̂) (11)

(νx)(D̂ | y(z).Ê) 'c y(z).(νx)(D̂ | Ê) (12)

(νx)(D̂ | y.inl; Ê) 'c y.inl; (νx)(D̂ | Ê) (13)

(νx)(D̂ | u(y).Ê) 'c u(y).(νx)(D̂ | Ê) (14)

(νx)(D̂ | y.case(Ê, F̂)) 'c y.case((νx)(D̂ | Ê), (νx)(D̂ | F̂)) (15)

(νu)(!u(y).D̂ | 0) 'c 0 (16)

(νu)(!u(y).D̂ |x(z).(Ê | F̂)) 'c x(z).
(
(νu)(!u(y).D̂ | Ê) |(νu)(!u(y).D̂ | F̂)

)
(17)

(νu)((!u(y).D̂) | y(z).Ê) 'c y(z).(νu)((!u(y).D̂) | Ê) (18)

(νu)((!u(z).D̂) | y.inl; Ê) 'c y.inl; (νu)((!u(z).D̂) | Ê) (19)

(νu)(!u(z).D̂ | y.case(Ê, F̂)) 'c y.case
(
(νu)(!u(z).D̂ | Ê), (νu)(!u(z).D̂ | F̂)

)
(20)

(νu)(!u(y).D̂ | !x(z).Ê) 'c !x(z).(νu)(!u(y).D̂ | Ê) (21)

(νu)(!u(y).D̂ | v(y).Ê) 'c v(y).(νu)(!u(y).D̂ | Ê)) (22)

z(w).(F̂ | x(y).(D̂ | Ê)) 'c x(y).(D̂ | z(w).(F̂ | Ê)) (23)

x(y).z(w).D̂ 'c z(w).x(y).D̂ (24)

varies according to the particular rule considered. As an example, the following inference represents
the interplay of rules (T(L) and (Tcut):

Γ; ∆1 ` P :: x:C

Γ; ∆2, x:C ` Q :: z:A Γ; ∆3, y:B ` R :: T

Γ; ∆2,∆3, x:C, y:A(B ` y(z).(Q | R) :: T
(T(L)

Γ; ∆, y:A(B ` (νx)(P | y(z).(Q | R)) :: T
(Tcut)

where ∆ = ∆1,∆2,∆3. Permutability is justified by the following inference:

Γ; ∆1 ` P :: x:C Γ; ∆2, x:C ` Q :: z:A

Γ; ∆1,∆2 ` (νx)(P | Q) :: z:A
(Tcut)

Γ; ∆3, y:B ` R :: T

Γ; ∆, y:A(B ` y(z).((νx)(P | Q) | R) :: T
(T(L)

This class of permutations is given by process equalities in Fig. D.6.

(B) Permutations between rule (Tcut) and a left rule. In contrast to permutations in class (A), this class
of conversions represents the interaction of a process requiring a service C on x, with some process
offering such a service. This distinction is due to the shape of rule (Tcut). To see the difference with
the permutations in class (A), consider the inferences given above with those for the permutation below,

12

which also concerns rules (T(L) and (Tcut). Letting ∆ = ∆1,∆2,∆3, we have:

Γ; ∆1 ` P :: z:A Γ; ∆2, y:B ` Q :: x:C

Γ; ∆1,∆2, y:A(B ` y(z).(P | Q) :: x:C
(T(L)

Γ; ∆3, x:C ` R :: T

Γ; ∆, y:A(B ` (νx)(y(z).(P | Q) | R) :: T
(Tcut)

Permutability is then justified by the following inference:

Γ; ∆1 ` P :: z:A

Γ; ∆2, y:B ` Q :: x:C Γ; ∆3, x:C ` R :: T

Γ; ∆2,∆3, y:B ` (νx)(Q | R) :: T
(Tcut)

Γ; ∆, y:A(B ` y(z).(P | (νx)(Q | R)) :: T
(T(L)

This class of permutations is given by process equalities in Fig. D.6.

(C) Permutations between rule (Tcut!) and a right or left rule. This class of permutations is analogous to the
two classes (A) and (B), but considering rule (Tcut!) instead of (Tcut). As an example, the following
permutation concerns the interplay of rule (Tcut!) with rule (T⊕R1):

Γ; · ` P :: y:C Γ, u:C; ∆ ` Q :: z:A

Γ; ∆ ` (νu)(!u(y).P | Q) :: z:A
(Tcut!)

Γ; ∆ ` z.inl; (νu)(!u(y).P | Q) :: z:A⊕B
(T⊕R1)

Then, permutability is justified by the following inference:

Γ; · ` P :: y:C

Γ, u:C; ∆ ` Q :: z:A

Γ, u:C; ∆ ` z.inl;Q :: z:A⊕B (T⊕R1)

Γ; ∆ ` (νu)(!u(y).P | z.inl;Q) :: z:A⊕B (Tcut!)

This class of permutations is given by process equalities in Fig. D.7.

(D) Permutations between two left rules. Classes (A)–(C) consider permutations in which one of the in-
volved rules is some form of cut. Permutations which do not involve cuts are also possible; they
represent type-preserving transformations for prefixes corresponding to independent (non interfering)
sessions. Here we consider permutations involving two left rules; that is, permutations in this class
involve two different behavioral dependencies. As an example, the permutation below concerns the
interplay of rule (T⊕L) with rule (T⊗L):

Γ; ∆, z:C, x:B, y:A ` P :: T

Γ; ∆, z:C, x:A⊗B ` x(y).P :: T
(T⊗L)

Γ; ∆, z:D,x:B, y:A ` Q :: T

Γ; ∆, z:D,x:A⊗B ` x(y).Q :: T
(T⊗L)

Γ; ∆, z:C ⊕D,x:A⊗B ` z.case(x(y).P, x(y).Q) :: T
(T⊕L)

Then, permutability is justified by the following inference:

Γ; ∆, z:C, x:B, y:A ` P :: T Γ; ∆, z:D,x:B, y:A ` Q :: T

Γ; ∆, z:C ⊕D,x:B, y:A ` z.case(P,Q) :: T
(T⊕L)

Γ; ∆, z:C ⊕D,x:A⊗B ` x(y).z.case(P,Q) :: T
(T⊕L)

This class is given by process equalities in Fig. D.8.

13

(E) Permutations between a left and a right rule. This class of permutations also involves rules acting on
two independent sessions: one rule acts on the left-hand side of the derivation (a behavioral dependence)
while the other acts on the right-hand side (a behavioral offer). As an example, the permutation below
concerns the interplay of rules (TNL1) and (T⊗R):

Γ; ∆1, z:C ` P :: y:A Γ; ∆2 ` Q :: x:B

Γ; ∆, z:C ` x(y).(P | Q) :: x:A⊗B
(T⊗R)

Γ; ∆, z:C ND ` z.inl;x(y).(P | Q) :: x:A⊗B
(TNL1)

where ∆ = ∆1,∆2. Permutability is justified by the following inference:

Γ; ∆1, z:C ` P :: z:A

Γ; ∆, z:C ND ` z.inl;P :: y:A
(TNL1)

Γ; ∆2 ` Q :: x:B

Γ; ∆, z:C ND ` x(y).(z.inl;P | Q) :: x:A⊗B
(T⊗R)

This class is given by process equalities in Fig. D.9.

Having recalled the type system and the permutability issues derived from the logical interpretation,
the following sections investigate linear logical relations and observational equivalences for well-typed π-
calculus processes.

5. Linear Logical Relations for Session-Typed Processes

Here we introduce a theory of linear logical relations for session types, and use it to prove that well-
typed processes are strongly normalizing (Definition 5.1) and confluent (Definition 5.2). The proof can be
divided into major two steps:

(1) Definition of a logical predicate on processes, by induction on the structure of (session) types. By
definition, processes in the predicate are strongly normalizing (resp. confluent).

(2) Prove that every well-typed process is in the logical predicate.

Concerning (1), we define the logical predicates by characterizing the general behavior of processes, as
specified by their typing. To this end, both predicates (Definitions 5.4 and 5.7) are almost identical, with
the only fundamental difference being the property of interest that we wish to capture. This highlights the
generality of our proof technique.

In order to achieve (2) we must first show that the logical predicates satisfy certain fundamental closure
conditions. Specifically, we must show that the predicates are closed under reduction (Propositions 5.10
and 5.18) and that a form of backward reduction closure (Propositions 5.11 and 5.19) also holds. The need
for these intermediate results is common in logical relations developments, due to the fact that the logical
predicates capture the extensional behavior of processes, as specified by their typings, satisfying the property
of interest (i.e., strong normalization and confluence, respectively) and must therefore be invariant under
unobservable actions. Given these basic soundness properties of the logical predicate it is then possible to
show the main result that all well-typed processes satisfy the predicate.

14

5.1. Preliminaries

We begin by defining strong normalization. In some previous works in process calculi [41, 15], strong
normalization is simply referred to as termination. In what follows, we often use the two terms interchange-
ably. Below, we write P 6−→ to mean that P cannot reduce; it may perform visible actions, though.

Definition 5.1 (Termination). A process P terminates, noted P⇓, if either P 6−→ or for any P ′ such that
P −→ P ′ we have that P ′ =⇒ P ′′ 6−→.

We now define confluence. Our notion considers only weak transitions based on internal behavior; as
such, it is closer to definitions of confluence used for functional languages than to the definitions used in
process calculi, which consider labeled transitions. (We refer to Section 8 for additional comparisons.)

Definition 5.2 (Confluence). A process P is confluent, noted P♦, if for any P1, P2 such that P =⇒ P1 and
P =⇒ P2, there exists a P ′ such that P1 =⇒ P ′ and P2 =⇒ P ′.

We now state an extension to ≡, which will be useful in our developments.

Definition 5.3. We write ≡! for the least congruence relation on processes which results from extending
structural congruence ≡ (Def. 2.2) with axioms (1)–(3) below:

1. (νu)(!u(z).P | (νy)(Q | R)) ≡! (νy)((νu)(!u(z).P | Q) | (νu)(!u(z).P | R))

2.
(νu)(!u(y).P | (νv)(!v(z).Q | R))

≡! (νv)((!v(z).(νu)(!u(y).P | Q)) | (νu)(!u(y).P | R))

3. (νu)(!u(y).Q | P) ≡! P if u 6∈ fn(P)

Notice that ≡! was defined in [11] (Def 4.3), and noted 's. These axioms are called the sharpened
replication axioms [42] and are known to express sound behavioral equivalences up to strong bisimilarity in
our typed setting.

Some intuitions on Definition 5.3 follow. Axioms (1) and (2) represent principles for the distribution of
shared servers among processes, while (3) formalizes the garbage collection of shared servers which cannot
be invoked by any process.

Proposition 5.1. Let P and Q be well-typed processes.

1. If P −→ P ′ and P ≡! Q then there is Q′ such that Q −→ Q′ and P ′ ≡! Q
′.

2. If P α−→ P ′ and P ≡! Q then there is Q′ such that Q α−→ Q′ and P ′ ≡! Q
′.

Proof. By induction on the derivation of P ≡! Q, then by case analysis on −→ and α−→, respectively.

Proposition 5.2. If P⇓ and P ≡! Q then Q⇓.

Proof. Follows by Prop 5.1, by noticing that: (i) axioms (1) and (2) of ≡! do not add new input-guarded
replicated processes and (ii) axiom (3) may add a new input-guarded replicated process (if read from right
to left) which cannot be invoked.

5.2. Logical Relations for Strong Normalization of Well-typed Processes

We now introduce a theory of linear logical relations for session-typed processes, and use it to prove
strong normalization (Definition 5.1).

15

First Step: The Logical Predicate and its Closure Properties. We define a logical predicate on well-typed
processes and establish a few associated closure properties. More precisely, we define a sequent-indexed
family of sets of processes (process predicates) so that a set of processes L[Γ; ∆ ` T] enjoying certain
closure properties is assigned to any sequent Γ; ∆ ` T . The logical predicate is defined by induction on
the structure of sequents. The base case, given below, considers sequents with empty left-hand side typing,
where we abbreviate L[Γ; ∆ ` T] by L[T].

Definition 5.4 (Logical Predicate for Termination, Base case). For any T = z:A we inductively define L[T]
as the set of all P such that P⇓ and ·; · ` P :: T and

P ∈ L[z:1] iff ∀P ′.(P =⇒ P ′ ∧ P ′ 6−→) implies P ′ ≡! 0

P ∈ L[z:A(B] iff ∀P ′, y.(P z(y)
=⇒ P ′) implies ∀Q ∈ L[y:A].(νy)(P ′ | Q) ∈ L[z:B]

P ∈ L[z:A⊗B] iff ∀P ′, y.(P z(y)
=⇒ P ′) implies

∃P1, P2.(P
′ ≡! P1 | P2 ∧ P1 ∈ L[y:A] ∧ P2 ∈ L[z:B])

P ∈ L[z:!A] iff ∀P ′.(P =⇒ P ′) implies ∃P1.(P
′ ≡! !z(y).P1 ∧ P1 ∈ L[y:A])

P ∈ L[z:ANB] iff (∀P ′.(P z.inl
=⇒ P ′) implies P ′ ∈ L[z:A]) ∧

(∀P ′.(P z.inr
=⇒ P ′) implies P ′ ∈ L[z:B])

P ∈ L[z:A⊕B] iff (∀P ′.(P z.inl
=⇒ P ′) implies P ′ ∈ L[z:A]) ∧

(∀P ′.(P z.inr
=⇒ P ′) implies P ′ ∈ L[z:B])

Some comments are in order. First, observe how the definition ofL[T] relies on both reductions and weak
transitions, and the fact that processes in the logical predicate are terminating by definition. Also, notice that
the use of ≡! in L[z:1] is justified by the fact that a terminated process may be well the composition of a
number of shared servers with no potential clients. Using suitable processes that “close” the derivative of the
transition, in L[z:A(B] and L[z:A ⊗ B] we adhere to the linear logic interpretations for input and output
types, respectively. In particular, in L[z:A⊗B] it is worth observing how ≡! is used to “split” the derivative
of the transition, thus preserving consistency with the separate, non-interfering nature of the multiplicative
conjunction. The definition of L[z:!A] is also rather structural, relying again on the distribution principles
embodied in ≡!. The definitions of L[z:ANB] and L[z:A⊕B] are self-explanatory.

Below, we extend the logical predicate to arbitrary typing environments. Observe how we adhere to the
principles of rules (Tcut) and (Tcut!) for this purpose.

Definition 5.5 (Logical Predicate for Termination, Inductive case). For any sequent Γ; ∆ ` T with a non-
empty left-hand side environment, we define L[Γ; ∆ ` T] as the set of processes inductively defined as
follows:

P ∈ L[Γ; y:A,∆ ` T] iff ∀R ∈ L[y:A].(νy)(R | P) ∈ L[Γ; ∆ ` T]

P ∈ L[u:A,Γ; ∆ ` T] iff ∀R ∈ L[y:A].(νu)(!u(y).R | P) ∈ L[Γ; ∆ ` T]

We often rely on the following alternative characterization of the sets L[Γ; ∆ ` T].

Definition 5.6. Let Γ = {ui:Bi}i∈I and ∆ = {xj :Aj}j∈J be a non-linear and a linear typing environment,
respectively. We define the sets of processes CΓ and C∆ as:

CΓ
def
=
{∏
i∈I

!ui(yi).Ri | Ri ∈ L[yi:Bi]
}

C∆
def
=
{∏
j∈J

Qj | Qj ∈ L[xj :Aj]
}

16

Because of the role of left-hand side typing environments, processes in CΓ and C∆ are then logical
representatives of the behavior specified by Γ and ∆, respectively.

Proposition 5.3. Let Γ and ∆ be a non-linear and a linear typing environment, resp. Then, for all Q ∈ CΓ
and for all R ∈ C∆, we have Q⇓ and R⇓. Moreover, Q 6−→.

Proof. By Definition 5.6, every process in C∆ corresponds to the composition of non-interfering, terminating
processes. Hence, R⇓. The same applies for processes in CΓ, which, by construction, correspond to the
composition of input-guarded replicated processes. Hence, Q⇓, Q 6−→.

Lemma 5.1. Let P be a process such that Γ; ∆ ` P :: T , with Γ = {ui:Bi}i∈I and ∆ = {xj :Aj}j∈J . We
then have:

P ∈ L[Γ; ∆ ` T] iff ∀Q ∈ CΓ,∀R ∈ C∆, (νũ, x̃)(P | Q | R) ∈ L[T].

Proof. Immediate from Definitions 5.5 and 5.6.

The following closure properties will be fundamental in the second step of the proof, when we will
show that well-typed processes are in the logical predicate. We first state closure of L[T] with respect to
substitution and structural congruence:

Proposition 5.4. Let A be a type. If P ∈ L[z:A] then P{x/z} ∈ L[x:A].

Proof. Immediate from Definition 5.4.

Proposition 5.5. Let P,Q be well-typed. If P ∈ L[T] and P ≡ Q then Q ∈ L[T].

Proof. By induction on the definition of P ≡ Q, using Propositions 5.1 and 5.2, and the fact that well-typed
processes are closed under ≡ by definition.

The next proposition provides a basic liveness guarantee for typed processes.

Proposition 5.6. Let ·; · ` P :: z:T and P⇓, with T ∈ {A ⊗ B,A(B,A ⊕ B,A N B}. Then, there exist
α, P ′ such that P α

=⇒ P ′, and one of the following holds:

− if T=A⊗B then α = z(y);

− if T=A(B then α = z(y);

− if T=A⊕B then α = z.inr or α = z.inl;

− if T=ANB then α = z.inr or α = z.inl.

Proof. Since T 6∈ {1, !T ′} then, using Lemma 3.4, we know that live(P) holds. Hence, Lemma 3.1 can be
used to infer that either P −→ P ′ or P α−→ P ′, with s(α) = z. Termination ensures that such reductions,
before or after α, are finite. This gives us Part (i). Part (ii) on the actual shape of α can be inferred using
Lemma 3.2.

We now extend Proposition 5.5 so as to state closure of L[T] under ≡!.

Proposition 5.7. Let P,Q be well-typed. If P ∈ L[T] and P ≡! Q then Q ∈ L[T].

Proof. By induction on the definition of P ≡! Q. See Appendix A.1, Page 40.

17

The following property gives us a basic determinacy property for well-typed processes. Below, we write
P −→x P

′ for the reduction step P −→ P ′ which results from a synchronization on name x, private to P .

Proposition 5.8. Let · ; · ` P :: z:A be a well-typed process. If P −→x P1 and P −→y P2 and P1 6= P2

then there exist P ′1, P
′
2 such that P1 −→y P

′
1 and P2 −→x P

′
2.

Proof. By a case analysis on the different ways in which two different reductions on private names can arise
from process P . The last applied rule in both reductions is the contextual rule for name restriction; we then
analyze all possible combinations for premises of that rule (input/output, branching/selection, shared server
invocation, forwarding), using subject reduction (Theorem 3.1) and progress (Theorem 3.2). See Appendix
A.2 (Page 42) for details.

Proposition 5.9. Let · ; · ` P :: T be a well-typed process. If P α
=⇒ P ∗ and P −→ P ′ then P ′ α

=⇒ P2, for
some P2.

Proof. By definition of weak transition, the assumption P α
=⇒ P1 can be alternatively expressed as P =⇒

P0
α−→ P1 =⇒ P ∗, for some P0, P1. There are two main cases, depending on whether P −→ P ′ =⇒ P0

holds, that is, on whether the sequence of reductions from P to P0 includes P ′. If P ′ is included then the
thesis follows trivially. If P ′ is not included then we have that both P −→ P ′ and P =⇒ P0 are enabled.
The thesis then follows by Proposition 5.8, which ensures that two enabled reductions from the same process
do not preclude each other.

We now state forward and backward closure of the logical predicate with respect to reduction; these are
typical ingredients in the method of logical relations.

Proposition 5.10 (Forward Closure). If P ∈ L[T] and P −→ P ′ then P ′ ∈ L[T].

Proof. By induction on the structure of T . In all cases, first we must show two conditions: (i) P ′⇓ and (ii) P ′

is well-typed. First, by assumption and Definition 5.4, we have that P⇓; then, since P −→ P ′, we have P ′⇓
as well. Second, by assumption and Definition 5.4, we have that · ; · ` P :: T , then, by Theorem 3.1, we
infer · ; · ` P ′ :: T . Then, with these two conditions and the assumption P −→ P ′, membership of P ′ in
L[T] is established depending on the structure of T . If T = z:1 or T = z:!A then one uses Proposition 5.8
to show that if P =⇒ P1 then also P ′ =⇒ P2, for some P2. In the other cases one uses by Proposition 5.9
to show that if P α

=⇒ P1 then also P ′ α
=⇒ P2, for some P2.

Proposition 5.11 (Backward Closure). Let · ; · ` P :: T be a well-typed process. If for all Pi such that
P −→ Pi we have that Pi ∈ L[T] implies P ∈ L[T].

Proof. By induction on the structure of T . In all cases, we must show: (i) P⇓, (ii) P is well-typed, and
(iii) P ∈ L[T], as in Definition 5.4. First, by assumption we have Pi⇓ for every reduction Pi of P ; then, since
P −→ Pi, we have P⇓ directly from Definition 5.1. Second, well-typedness of P is given by assumption.
For (iii), we proceed depending on the structure of T , exploiting the fact that Pi ∈ L[T]. If T = z:1 then
Definition 5.4 ensures that ∀P ′.(Pi =⇒ P ′ ∧ P ′ 6−→) implies P ′ ≡! 0. Now, since by assumption we have
P −→ Pi, the definition of weak transition ensures that P −→ Pi and Pi =⇒ P ′ imply P =⇒ P ′, for any
P ′. Therefore, P ∈ L[z:1]. If T = z:!A the reasoning is similar, for membership in L[T] also relies on
an unlabeled weak transition. In all other cases, membership in L[T] depends on a labeled weak transition:
Definition 5.4 ensures that every P ′ such that Pi

α
=⇒ P ′ satisfies some condition—the exact shape of α is

determined using Proposition 5.6. Now, since by assumption we have P −→ Pi, definition of weak transition
ensures that P −→ Pi and Pi

α
=⇒ P ′ imply P α

=⇒ P ′, for any P ′. Thus, P ∈ L[T].

18

The final closure property concerns process composition:

Proposition 5.12. Let P,Q be processes such that P ∈ L[T] and Q ∈ L[−:1]. Then, P | Q ∈ L[T].

Proof. By induction on the structure of T . See Appendix A.3, Page 45.

Second Step: Well-typed processes are in the logical predicate. We now prove that well-typed processes
are in the logical predicate. Because of Definition 5.4, termination of well-typed processes will follow as a
consequence.

Lemma 5.2. Let P be a process. If Γ; ∆ ` P :: T then P ∈ L[Γ; ∆ ` T].

Proof. By induction on the derivation of Γ; ∆ ` P :: T , with a case analysis on the last typing rule used.
We have 18 cases to check; in all of them, we use Lemma 5.1 to show that every M = (νũ, x̃)(P | G | D)
with G ∈ CΓ and D ∈ C∆, is in L[T]. In case (Tid), we use Proposition 5.4 (closure wrt substitution)
and Proposition 5.11 (backward closure). In cases (T⊗L), (T(L), (Tcopy), (T⊕L), (TNL1), and (TNL2),
we proceed in two steps: first, using Proposition 5.10 (forward closure) we show that every M ′′ such that
M =⇒ M ′′ is in L[T]; then, we combine this result with Proposition 5.11 (backward closure) to conclude
thatM ∈ L[T]. In cases (T1R), (T⊗R), (T(R), (T!R), (T⊕R1), and (T⊕R2), we show thatM conforms to a
specific case of Definition 5.4. Case (T1L) uses Proposition 5.12. Cases (T⊗L), (T(L), (T⊕L), and (TNL1)
use the liveness guarantee given by Proposition 5.6. Cases (Tcopy), (T!L), and (Tcut!) use Proposition 5.5
(closure under ≡). Cases (Tcut), (T(R), and (T!R) use Proposition 5.7 (closure under ≡!). See Appendix
A.4, Page 40 for details.

We now state our first main result: well-typed processes terminate.

Theorem 5.1 (Well-Typed Processes are Terminating). If Γ; ∆ ` P :: T then P⇓.

Proof. Follows from previously proven facts:

Γ; ∆ ` P :: T [Assumption] (a)
P ∈ L[Γ; ∆ ` T] [By Lemma 5.2 and (a)] (b)
Pick any G ∈ CΓ, D ∈ C∆:
G⇓, D⇓ [By Prop 5.3] (c)
(νũ, x̃)(P | G | D) ∈ L[T] [By Lemma 5.1 on (b)] (d)
(νũ, x̃)(P | G | D)⇓ [From (d) and Def 5.4] (e)
P⇓ [Consequence of (c) and (e)]

5.3. Logical Relations for Confluence of Well-Typed Processes

We now adapt the logical relations and the proof technique of Section 5.2 to the case of confluence
(Definition 5.2).

19

First Step: The Logical Predicate and its Closure Properties. The logical predicate for confluence, given
below, is essentially the same as the one in Definition 5.4. Hence, subsequent auxiliary definitions and
closure properties mirror those in Section 5.2.

Definition 5.7 (Logical Predicate for Confluence, Base case). For any T = z:A we inductively define L♦[T]
as the set of all P such that P♦ and ·; · ` P :: T and

P ∈ L♦[z:1] iff ∀P ′.(P =⇒ P ′ ∧ P ′ 6−→) implies P ′ ≡! 0

P ∈ L♦[z:A(B] iff ∀P ′y.(P z(y)
=⇒ P ′) implies

∀Q ∈ L♦[y:A].(νy)(P ′ | Q) ∈ L♦[z:B]

P ∈ L♦[z:A⊗B] iff ∀P ′y.(P z(y)
=⇒ P ′) implies

∃P1, P2.(P
′ ≡! P1 | P2 ∧ P1 ∈ L♦[y:A] ∧ P2 ∈ L♦[z:B])

P ∈ L♦[z:!A] iff ∀P ′.(P =⇒ P ′) implies ∃P1.(P
′ ≡! !z(y).P1 ∧ P1 ∈ L♦[y:A])

P ∈ L♦[z:ANB] iff (∀P ′.(P z.inl
=⇒ P ′) implies P ′ ∈ L♦[z:A]) ∧

(∀P ′.(P z.inr
=⇒ P ′) implies P ′ ∈ L♦[z:B])

P ∈ L♦[z:A⊕B] iff (∀P ′.(P z.inl
=⇒ P ′) implies P ′ ∈ L♦[z:A]) ∧

(∀P ′.(P z.inr
=⇒ P ′) implies P ′ ∈ L♦[z:B])

Below, we extend L♦[T] to arbitrary typing environments.

Definition 5.8 (Logical Predicate - Inductive case). For any sequent Γ; ∆ ` T with a non-empty left hand
side environment, we define L♦[Γ; ∆ ` T] to be the set of processes inductively defined as follows:

P ∈ L♦[Γ; y:A,∆ ` T] if ∀R ∈ L♦[y:A].(νy)(R | P) ∈ L♦[Γ; ∆ ` T]

P ∈ L♦[u:A,Γ; ∆ ` T] if ∀R ∈ L♦[y:A].(νu)(!u(y).R | P) ∈ L♦[Γ; ∆ ` T]

We often rely on the following characterization of the sets L♦[Γ; ∆ ` T].

Definition 5.9. Let Γ = {ui:Bi}i∈I and ∆ = {xj :Aj}j∈J be a non-linear and a linear typing environment,
respectively. We define the sets of processes C♦Γ and C♦∆ as:

C♦Γ
def
=
{∏
i∈I

!ui(yi).Ri | Ri ∈ L♦[yi:Bi]
}

C♦∆
def
=
{∏
j∈J

Qj | Qj ∈ L♦[xj :Aj]
}

We define sets of processes C♦Γ and C♦∆ as logical representatives of the behavior specified by Γ and ∆,
respectively.

Proposition 5.13. Let Γ and ∆ be a non-linear and a linear typing environment, respectively. Then, for all
Q ∈ C♦Γ and for all R ∈ C♦∆, we have Q♦ and R♦. Furthermore, Q 6−→ and R⇓.

Proof. By Definition 5.9, every R ∈ C♦∆ corresponds to the parallel composition of independent (i.e., non
interacting), confluent, and well-typed processes. Hence, we have R♦ and R⇓, as ensured by Theorem 5.1.
As forQ ∈ C♦Γ , it corresponds to the parallel composition of independent, input-guarded replicated processes
which are confluent and well-typed. Hence, Q♦ and Q 6−→.

20

Lemma 5.3. Let Γ; ∆ ` P ::T , with Γ = {ui:Bi}i∈I and ∆ = {xj :Aj}j∈J . We have:

P ∈ L♦[Γ; ∆ ` T] iff ∀Q ∈ C♦Γ ,∀R ∈ C
♦
∆, (νũ, x̃)(P | Q | R) ∈ L♦[T].

Proof. The right-to-left direction (if P ∈ L♦[Γ; ∆ ` T] then (νũ, x̃)(P | Q | R) ∈ L♦[T]) follows
directly from Definitions 5.8 and 5.9. The left-to-right direction (if (νũ, x̃)(P | Q | R) ∈ L♦[T] then
P ∈ L♦[Γ; ∆ ` T]) relies on Definitions 5.8 and 5.9 but also on the properties on Q,R that follow from
Proposition 5.13.

We now state the closure properties required to show that well-typed processes are in the logical predicate
for confluence.

Proposition 5.14. If P♦ and P ≡! Q then Q♦.

Proof. Follows immediately from Proposition 5.1.

Proposition 5.15. Let A be a type. If P ∈ L♦[z:A] then P{x/z} ∈ L♦[x:A].

Proof. Immediate from Definition 5.7.

Proposition 5.16. Let P,Q be well-typed. If P ∈ L♦[T] and P ≡ Q then Q ∈ L♦[T].

Proof. By induction on the definition of P ≡ Q, using Propositions 5.1 and 5.14, and the fact that well-typed
processes are closed under ≡ by definition.

We now extend Proposition 5.16 so as to state closure of L♦[T] under ≡!.

Proposition 5.17. Let P,Q be well-typed. If P ∈ L♦[T] and P ≡! Q then Q ∈ L♦[T].

Proof. By induction on the definition of P ≡! Q, following the lines of the proof of Proposition 5.7.

We now state forward and backward closure of L♦[T] with respect to reduction.

Proposition 5.18 (Forward Closure). If P ∈ L♦[T] and P −→ P ′ then P ′ ∈ L♦[T].

Proof. By induction on the structure of T . In all cases, we must show two conditions: (i) P ′♦ and (ii) P ′ is
well-typed. Observe that by assumption and Definition 5.7 we have both P♦ and · ; · ` P :: T .

− For (i), by assumption we have P♦ and P −→ P ′. We have to show that if P ′ =⇒ P1 and P ′ =⇒ P2,
for any P1, P2, then there exists a process P3 such that P1 =⇒ P3 and P2 =⇒ P3. Since P♦, for any
R1, R2 such that P =⇒ R1 and P =⇒ R2, there exists an R′ such that R1 =⇒ R′ and R2 =⇒ R′. This
includes the particular case in which P −→ P ′ =⇒ P1 and P −→ P ′ =⇒ P2. Therefore, the existence
of a P3 such that P1 =⇒ P3 and P2 =⇒ P3 follows from P♦. Thus, P ′♦.

− For (ii), since · ; · ` P :: T , Theorem 3.1 ensures · ; · ` P ′ :: T . Then, with these two conditions and
the assumption P −→ P ′, membership of P ′ in L♦[T] is established depending on the structure of T . If
T = z:1 or T = z:!A then one uses Proposition 5.8 to show that if P =⇒ P1 then also P ′ =⇒ P2, for
some P2. In the other cases one uses by Proposition 5.9 to show that if P α

=⇒ P1 then also P ′ α
=⇒ P2,

for some P2.

The proof of the following proposition follows closely that of Proposition 5.11:

21

Proposition 5.19 (Backward Closure). Let · ; · ` P :: T be a well-typed process. If for all Pi such that
P −→ Pi we have that Pi ∈ L♦[T] implies P ∈ L♦[T].

Proof. By induction on the structure of T . In all cases, we must show: (i) P♦, (ii) P is well-typed, and
(iii) P ∈ L♦[T], as in Definition 5.7. Well-typedness of P is given by assumption. For (i) and (iii) we have:

− For (i), given that whenever P −→ Pk we have Pk♦, we need to “extend the diamond”, starting from P .
Precisely, we have to show that for any Pi, Pj such that P −→ Pi, P −→ Pj , Pi♦, and Pj♦, and for any
R1, R2 such that P −→ Pi =⇒ R1 and P −→ Pj =⇒ R2, there exists an R′ such that R1 =⇒ R′ and
R2 =⇒ R′. The thesis follows by Proposition 5.8 (page 18) which ensures that a reduction P −→ Pi
does not preclude all those reduction paths reachable if the first reduction is P −→ Pj . Since we have
Pi♦ and Pj♦ by assumption, we may conclude that P♦, as desired.

− For (iii), we proceed depending on the structure of T , exploiting the fact that Pi ∈ L♦[T]. If T = z:1
then Definition 5.7 ensures that ∀P ′.(Pi =⇒ P ′∧P ′ 6−→) implies P ′ ≡! 0. Now, since by assumption we
have P −→ Pi, the definition of weak transition ensures that P −→ Pi and Pi =⇒ P ′ imply P =⇒ P ′,
for any P ′. Therefore, P ∈ L♦[z:1]. If T = z:!A the reasoning is similar, for membership in L♦[T] also
relies on an unlabeled weak transition. In all other cases, membership in L♦[T] depends on a labeled
weak transition: Definition 5.7 ensures that every P ′ such that Pi

α
=⇒ P ′ satisfies some condition—the

exact shape of α is determined using Proposition 5.6. Now, since by assumption we have P −→ Pi,
definition of weak transition ensures that P −→ Pi and Pi

α
=⇒ P ′ imply P α

=⇒ P ′, for any P ′. Thus,
P ∈ L♦[T].

Second Step: Well-Typed Processes are in the Logical Predicate. We now prove that well-typed processes
are in the logical predicate.

Lemma 5.4. Let P be a process. If Γ; ∆ ` P :: T then P ∈ L♦[Γ; ∆ ` T].

Proof. By induction on the derivation of Γ; ∆ ` P :: T , with a case analysis on the last typing rule used.
See Appendix A.5 (Page 55) for details.

We now state the desired result: well-typed processes are confluent.

Theorem 5.2 (Well-typed Processes are Confluent). If Γ; ∆ ` P :: T then P♦.

Proof. Follows from previously proven facts. By assumption, we have Γ; ∆ ` P :: T . Using this and
Lemma 5.4 we get P ∈ L♦[Γ; ∆ ` T]. Pick any G ∈ C♦Γ , D ∈ C

♦
∆: combining P ∈ L♦[Γ; ∆ ` T] and

Lemma 5.3 gives us (νũ, x̃)(P | G | D) ∈ L♦[T]. By using this, together with Definition 5.7, we infer
(νũ, x̃)(P | G | D)♦. Since Proposition 5.13 ensures G♦ and D♦, this last result implies P♦.

6. Observational Equivalences for Session-Typed Processes

In this section, we investigate the behavioral theory for session-typed processes. We introduce typed
context bisimilarity (noted≈), a labelled bisimulation which closely follows the nature of typing judgments.

22

6.1. Auxiliary Definitions

Recall that ` P :: T stands for · ; · ` P :: T . We sometimes write Γ; ∆ ` P,Q :: T to mean that both
Γ; ∆ ` P :: T and Γ; ∆ ` Q :: T hold. Below, we use S to range over sequents of the form Γ; ∆ ` T . We
will rely on type-respecting relations, which are indexed by sequents S. We will use binary relations, so the
adjective “binary” will be always omitted.

Definition 6.1 (Type-respecting relations). A type-respecting relation over processes, written {RS}S, is
defined as a family of relations over processes indexed by S. We often write R to refer to the whole family,
and use notation Γ; ∆ ` P RQ ::T to mean both (i) Γ; ∆ ` P,Q :: T and (ii) (P,Q) ∈ RΓ;∆`T .

We use R,R′, . . . to range over type-respecting relations. In the following, we will often omit the
adjective “type-respecting”.

Definition 6.2. A relationR is said to be

− Reflexive, if Γ; ∆ ` P :: T implies Γ; ∆ ` P RP ::T ;

− Symmetric, if Γ; ∆ ` P RQ ::T implies Γ; ∆ ` QRP ::T ;

− Transitive, Γ; ∆ ` P RP ′ ::T and Γ; ∆ ` P ′RQ ::T imply Γ; ∆ ` P RQ ::T .

Moreover,R is said to be an equivalence if it is reflexive, symmetric, and transitive.

In order to define contextual relations, we introduce a natural notion of (typed) process contexts. Intu-
itively, a context is a process that contains one hole, noted •. Holes are typed: a hole, denoted by •Γ;∆`T , can
only be filled in with a process matching its type. We shall use K,K ′, . . . for ranging over properly defined
contexts, in the sense given next. We rely on left- and right-hand side typings for defining contexts and its
properties precisely. We consider contexts with exactly one hole, but our definitions are easy to generalize.

We rely on a minimal extension of the syntax of processes (Definition 2.1) with •. We then extend
sequents, in the following way:

H; Γ; ∆ ` K :: z:C

H specifies the typing requirements of the unique hole occurring in (context) K, and is thus always of the
form •Γ;∆`T for some Γ, ∆ and T : we have that

•Γ;∆`T ; Γ; ∆′ ` K :: z:C

is the type of a context K whose hole is to be substituted by some process P such that Γ; ∆ ` P :: T . As a
result of the substitution, we obtain a process Γ; ∆′ ` K[P] :: z:C. Since we consider at most one hole, H
is either empty or has exactly one element. IfH is empty then K is a process and we obtain the usual typing
rules; we write Γ; ∆ ` R :: T rather than ·; Γ; ∆ ` R :: T . The definition of typed contexts is completed by
extending the type system with the following two rules:

(Thole)

•Γ;∆`T ; Γ; ∆ ` • :: T

(Tfill)
Γ; ∆ ` R :: T •Γ;∆`T ; Γ; ∆′ ` K :: z:C

Γ; ∆′ ` K[R] :: z:C

Axiom (Thole) allows to introduce holes into typed contexts. In rule (Tfill), R is a process (it does not have
any holes), and K is a context with a hole of type Γ; ∆ ` T . The substitution of occurrences of • in K with
R, noted K[R] is sound as long as the typings of R coincide with those declared inH for K.

23

As an example, consider a simple parallel context, (νx)(• | P) which is filled in with an appropriately
typed process R:

Γ;x:C,∆2 ` R :: T

...
Γ; ∆1 ` P :: x:C •Γ;x:C,∆2`T ; Γ;x:C,∆2 ` • :: T

(Thole)

•Γ;x:C,∆2`T ; Γ; ∆1,∆2 ` (νx)(P | •) :: T
(Tcut)

Γ; ∆1,∆2 ` (νx)(P | R) :: T
(Tfill)

As we have seen, contexts in our setting are hardly arbitrary: only type-compatible processes are inserted
into holes. Based on this observation, and following the typing rules, we define a notion of contextual relation
in our typed setting:

Definition 6.3 (Contextual Relation). A relation R is contextual if it satisfies the conditions in Figure 5
(Page 25).

In Figure 5, we write x.inx;P to stand for both x.inr;P and x.inl;P . Some comments to the condi-
tions associated to Definition 6.3 are in order. In all cases, observe how the typing rules guide the shape of
allowed contexts. For instance, item (1) is easily seen to correspond to rule (T(R) and associated to the
input context

•Γ;∆,y:A`x:B ; Γ; ∆ ` x(y).• :: x:A(B

to be filled in by any P such that Γ; ∆, y:A ` P :: x:B. In fact, premises of each rule suggest where to place
holes; rules with two premises lead to two different contexts. Observe how item (0) involves the forwarding
construct; this could be seen as a form of closure under substitution, which renames the right-hand side
typing of a process. Items (8)-(13) correspond to closure with respect to parallel contexts, which in our
typed setting also involves closure with respect to restriction, following rules (Tcut) and (Tcut!). Notice
that while closure under arbitrary process composition is not allowed, closure under independent parallel
composition (cf. rule (INDCOMP) in § 3) is permitted (cf. Items (12) and (13)).

Remark 6.1. Notice that not all the contextuality conditions in Figure 5 apply in the caseR relates processes
related under empty left-hand side typing environments. Indeed, only items (0), (2)-(8), (10)-(13), and (15)
apply in that case.

6.2. Typed Context Bisimilarity
We define typed context bisimilarity, a labeled bisimilarity for typed processes. It is defined contextually,

as a binary relation indexed over sequents. Roughly, typed context bisimilarity equates two processes if, once
coupled with all of their requirements (as described by the left-hand side typing), they perform the same
actions (as described by the right-hand side typing). To formalize this intuition, we rely on a combination
of inductive and coinductive arguments. The base case of the definition covers the cases in which the left-
hand side typing environment is empty (i.e., the process requires nothing from its context to execute): the
bisimulation game is then defined by induction on the structure of the (right-hand side) typing, following
the expected behavior in each case. The inductive case covers the cases in which the left-hand side typing
environment is not empty: the tested processes are put in parallel with processes implementing the required
behaviors (as described in the left-hand side typing).

Definition 6.4 (Typed Context Bisimilarity). A symmetric type-respecting binary relation over processesR
is a typed context bisimulation if
Base Cases

24

Figure 5 Conditions for contextual type-respecting relations (cf. Def. 6.3)
A type-respecting relationR is contextual if

0. Γ; ∆ ` P RQ :: y:A implies Γ; ∆ ` (νy)(P | [y↔z])R (νy)(Q | [y↔z]) :: z:A,
for any z such that Γ; y:A ` [y↔z] :: z:A

1. Γ; ∆, y:A ` P RQ :: x:B implies Γ; ∆ ` x(y).P Rx(y).Q :: x:A(B

2. Γ; ∆ ` P RQ :: y:A implies Γ; ∆,∆′ ` x(y).(P | S)Rx(y).(Q | S) :: x:A⊗B,
for any x, S,B,∆′ such that Γ; ∆′ ` S :: x:B

3. Γ; ∆′ ` P RQ :: x:B implies Γ; ∆,∆′ ` x(y).(S | P)Rx(y).(S | Q) :: x:A⊗B,
for any y, S,A,∆′, such that Γ; ∆ ` S :: y:A

4. Γ; ∆ ` P RQ :: x:A implies Γ; ∆ ` x.case(P, S)Rx.case(Q,S) :: x:A N B,
for any S,B such that Γ; ∆ ` S :: x:B

5. Γ; ∆ ` P RQ :: x:B implies Γ; ∆ ` x.case(S, P)Rx.case(S,Q) :: x:A N B,
for any S,A such that Γ; ∆ ` S :: x:A

6. Γ; ∆ ` P RQ :: x:A implies Γ; ∆ ` x.inx;P Rx.inx;Q :: x:A⊕B, for any B

7. Γ; ∆ ` P RQ :: x:A implies Γ; ∆,∆′ ` (νx)(P | S)R (νx)(Q | S) :: T ,
for any S, T,∆′ such that Γ; ∆′, x:A ` S :: T

8. Γ; ∆, x:A ` P RQ :: T implies Γ; ∆,∆′ ` (νx)(S | P)R (νx)(S | Q) :: T ,
for any S,∆′ such that Γ; ∆′ ` S :: x:A

9. Γ; · ` P RQ :: y:A implies Γ; ∆ ` (νu)(!u(y).P | S)R (νu)(!u(y).Q | S) :: T ,
for any u, S, T,∆ such that Γ, u:A; ∆ ` S :: T

10. Γ, u:A; ∆ ` P RQ :: T implies Γ; ∆ ` (νu)(!u(y).S | P)R (νu)(!u(y).S | Q) :: T ,
for any S, y such that Γ; · ` S :: y:A

11. Γ; ∆ ` P RQ :: T implies Γ; ∆,∆′ ` S | P RS | Q :: T , for any S,∆′ such that Γ; ∆′ ` S :: −:1

12. Γ; ∆ ` P RQ :: −:1 implies Γ; ∆,∆′ ` P | SRQ | S :: T ,
for any S, T,∆′ such that Γ; ∆′ ` S :: T

13. Γ, u:A; ∆ ` P{u/x}RQ{u/x} :: T implies Γ; ∆, x:!A ` P RQ :: T

14. Γ; · ` P RQ :: y:A implies Γ; · `!x(y).P R !x(y).Q :: x:!A, for any x

15. Γ; ∆, y:A, x:B ` P RQ :: T implies Γ; ∆, x:A⊗B ` x(y).P Rx(y).Q :: T

16. Γ; ∆ ` P RQ :: y:A implies Γ; ∆,∆′, x:A(B ` x(y).(P | S)Rx(y).(Q | S) :: T ,
for any x,B, S, T,∆′ such that Γ; ∆′, x:B ` S :: T

17. Γ; ∆, x:B ` PRQ :: T implies Γ; ∆,∆′, x:A(B ` x(y).(P |S)Rx(y).(Q |S) :: T ,
for any y,A, S,∆′ such that Γ; ∆′ ` S :: y:A

18. Γ, u:A; ∆, y:A ` P RQ :: T implies Γ, u:A; ∆ ` u(y).P Ru(y).Q :: T

19. Γ; ∆, x:A ` P RQ :: T implies Γ; ∆, x:A⊕B ` x.case(P, S)Rx.case(Q,S) :: T ,
for any x, S,B such that Γ; ∆, x:B ` S :: T

20. Γ; ∆, x:B ` P RQ :: T implies Γ; ∆, x:A⊕B ` x.case(S, P)Rx.case(S,Q) :: T ,
for any A,S, T such that Γ; ∆, x:A ` S :: T

21. Γ; ∆, x:A ` P RQ :: T implies Γ; ∆, x:A N B ` x.inx;P Rx.inx;Q :: T

Tau ` P RQ ::T implies that for all P ′ such that P τ−→ P ′, there exists a Q′ such that Q =⇒ Q′ and

25

` P ′RQ′ ::T

Input ` P RQ ::x:A(B implies that for all P ′ such that P
x(y)−−−→ P ′, there exists a Q′ such that Q

x(y)
=⇒

Q′ and for all R such that ` R :: y:A,
` (νy)(R | P ′)R (νy)(R | Q′) ::x:B.

Output ` P RQ ::x:A ⊗ B implies that for all P ′ such that P
x(y)−−−→ P ′, there exists a Q′ such that

Q
x(y)
=⇒ Q′ and for all R such that ·; y:A ` R :: −:1, ` (νy)(P ′ | R)R (νy)(Q′ | R) ::x:B.

Replication ` P RQ ::x:!A implies that for all P ′ such that P
x(z)−−−→ P ′, there exists a Q′ such that

Q
x(z)
=⇒ Q′ and, for all R such that ·; y:A ` R :: −:1, ` (νz)(P ′ | R)R (νz)(Q′ | R) ::x:!A.

Choice ` P RQ ::x:ANB implies both:

• If P x.inl−−−→ P ′ then ` P ′RQ′ ::x:A, for some Q′ such that Q x.inl
=⇒ Q′; and

• If P x.inr−−−→ P ′ then ` P ′RQ′ ::x:B, for some Q′ such that Q x.inr
=⇒ Q′.

Selection ` P RQ ::x:A⊕B implies both:

• If P x.inl−−−→ P ′ then ` P ′RQ′ ::x:A, for some Q′ such that Q x.inl
=⇒ Q′; and

• If P x.inr−−−→ P ′ then ` P ′RQ′ ::x:B, for some Q′ such that Q x.inr
=⇒ Q′.

Inductive Cases

Linear Names Γ; ∆, y:A ` P RQ ::T implies that
for all R such that ` R :: y:A, then Γ; ∆ ` (νy)(R | P)R (νy)(R | Q) ::T .

Shared Names Γ, u:A; ∆ ` P RQ ::T implies that for all R such that ` R :: z:A, then Γ; ∆ `
(νu)(!u(z).R | P)R (νu)(!u(z).R | Q) ::T .

We write ≈ for the union of all typed context bisimulations, and call it typed context bisimilarity.

In all cases, a strong action is matched with a weak transition. In proofs, we shall exploit the fact that
Theorems 5.1 and 5.2 ensure that such weak transitions always have finite and confluent reductions. In the
base case, the clauses for input, output, and replication decree the closure of the tested processes with a
process R that “complements” the continuation of the tested behavior; observe the very similar treatment
for output and replication (where R depends on some behavior), and contrast it with that for input (where
R provides the behavior). Also, notice how all clauses but that for replication are defined coinductively for
the tested processes (in the sense that closed evolutions should be in the relation), but inductively on the
type indexing the relation—the clause for replication may be thus considered as the only fully coinductive
one. Also worth noticing is how the closures defined in such clauses (and those defined by the clauses in the
inductive case) follow closely the spirit of (Tcut/Tcut!) rules in the type system.

26

6.3. Properties of Typed Context Bisimilarity

We establish some properties of typed context bisimilarity: equivalence (Proposition 6.1); closure under
independent parallel composition (Proposition 6.2); a simplification for the bisimulation proof technique
(Proposition 6.3); contextuality/congruence (Lemma 6.1); and τ -inertness (Lemma 6.2).

Proposition 6.1. ≈ is an equivalence, in the sense of Definition 6.2.

Proof. Reflexivity and symmetry are immediate from the definition of type-respecting relations. For transi-
tivity, one shows that for any Γ,∆, T , relation

R =
{

(P,R) | there is Q with Γ; ∆ ` P ≈ Q :: T ∧ Γ; ∆ ` Q ≈ R :: T
}

is a typed context bisimulation. Suppose P α−→ P ′; we must find a matching action from R, i.e., R α
=⇒ R′.

The existence of such an action follows directly from the assumptions Γ; ∆ ` P ≈ Q :: T and Γ; ∆ ` Q ≈
R :: T . The reasoning when R moves first is analogous.

Proposition 6.2 (Closure under independent composition). Let P,Q, S be processes such that Γ; ∆ ` P ≈
Q :: T and Γ; ∆′ ` S :: −:1 hold.
Then we have: Γ; ∆,∆′ ` P | S ≈ Q | S :: T

Proof. Straightforward by showing the appropriate bisimulation, using the fact that composition with arbi-
trary processes offering type 1 is type preserving, and by noticing that S cannot interact with P,Q.

Definition 6.4 immediately suggests a proof technique for showing that two processes are typed context
bisimilar. First, close the processes with parallel representatives of their context, applying repeatedly the
inductive cases until the left-hand side typing is empty. Then, follow the usual co-inductive proof technique,
and show a typed-respecting relation containing the processes obtained in the first step. More precisely,
given a left-hand side typing Γ; ∆, below we define the set KΓ;∆`T of parallel representatives of Γ,∆. This
is a set of parallel process contexts which represent the closures generated by the inductive case of typed
context bisimilarity. These parallel representatives will be useful to simplify proofs for ≈.

Definition 6.5 (Parallel Representatives). Let Γ and ∆ be typing environments defined as Γ = {ui:Bi}i∈I
and ∆ = {xj :Aj}j∈J , respectively. We say that K is a parallel representative in KΓ;∆`T if

K ≡ (νũ, x̃)(• |
∏
i∈I

!ui(yi).Ri |
∏
j∈J

Sj)

with ` Ri :: yi:Bi and ` Sj :: xj :Aj , for every i ∈ I and j ∈ J .

Clearly, for every left-hand side typing there may be many parallel representatives, corresponding to
different implementations of the required behaviors. It is easy to see that parallel representatives are well-
typed: if K ∈ KΓ;∆`T then •Γ;∆`T ; ·; · ` K :: T . In fact, filling in a context K ∈ KΓ;∆`T with a process
Γ,∆ ` P :: T will lead to process ` K[P] :: T , which requires nothing from its environment. This is
the essence of the desired simplification, formalized by the following proposition. It allows us to convert
an (inductive) proof under non-empty typing environments Γ,∆ into a (coinductive) proof under empty
environments, with processes enclosed within parallel contexts.

Proposition 6.3. Γ; ∆ ` P ≈ Q ::T implies ` K[P] ≈ K[Q] ::T , where K is any parallel representative
in KΓ;∆`T , as in Definition 6.5.

27

Proof. See Appendix B.1 (Page 56) for details.

Based on the logical interpretation, we introduce a notion of “continuation relation” for pairs of typed
processes. This will be useful to define and reason about type-respecting relations. Below, IΓ;∆`T stands
for the relation

{(P,Q) : Γ; ∆ ` P,Q :: T }

which collects pairs of processes with identical left- and right-hand side typings.

Definition 6.6. Using � to range over ⊗,(and � to range over ⊕,N, we define the type-respecting
relationW`x:A by induction on the right-hand side typing, as follows:

W`x:1 = I`x:1 W`x:A�B = I`x:B ∪W`x:B

W`x:!A = I`x:!A W`x:A�B = I`x:A ∪W`x:A ∪ I`x:B ∪W`x:B

This way, e.g., the continuation relation for x:A⊗B is I`x:B ∪ W`x:B : it contains all pairs typed by
` x:B (as processes of type x:A⊗B are to be typed by x:B after the output action) as well as those pairs in
the continuation relation for x:B.

We now prove that ≈ is a contextual relation. That is, ≈ is a congruence with respect to the typed
contexts associated to Definition 6.3.

Lemma 6.1 (Contextuality of ≈). Typed context bisimilarity is a contextual relation, in the sense of Defini-
tion 6.3.

Proof. The proof proceeds by coinduction, showing a typed context bisimulation for each of the conditions
associated to Def. 6.3. We shall exploit the proof technique given by Prop. 6.3, which allows to consider ≈
under empty left-hand side contexts, for pairs of processes enclosed within appropriate parallel representa-
tives. As a result, it suffices to consider only some of the conditions in Table 5; see Remark 6.1. Most cases
are easy; below we detail one of them: closure with respect to output, Item (2). (See Appendix B.2, Page 57
for other cases.)

We have to show that Γ; ∆ ` P ≈ Q :: y:A implies

Γ; ∆,∆′ ` x(y).(P | S) ≈ x(y).(Q | S) :: x:A⊗B

for any S, x,B,∆′ such that Γ; ∆′ ` S :: x:B. Using Proposition 6.3, this can be simplified, and it suffices
to show that ` K1[P] ≈ K1[Q] :: y:A implies

` K2[x(y).(K1[P] | S)] ≈ K2[x(y).(K1[Q] | S)] :: x:A⊗B

where K1 ∈ KΓ;∆`y:A and K2 ∈ K ·;∆′`x:A⊗B .
Let M = K2[x(y).(K1[P] | S)] and N = K2[x(y).(K1[Q] | S)]. Define

R2 = {(M,N) : ` K1[P] ≈ K1[Q] :: y:A, K1 ∈ KΓ;∆`y:A, K2 ∈ K ·;∆′`x:A⊗B}
∪ W`x:B

We show thatR2 is a typed context bisimulation.
Suppose M moves first: M

α−−→ M ′. We must find a matching action from N such that N α
=⇒

N ′. There are two possibilities for α: either α = τ or α = x(y). In the first case, we have M τ−−→

28

K3[x(y).(K1[P] | S)] = M ′, where K2
τ−−→ K3. Since K2 occurs identically in N by construction, this

action can be matched and we have N =⇒ K4[x(y).(K1[Q] | S)] = N ′, where K2 =⇒ K4. Subject
reduction (Theorem 3.1) ensures both K3 ∈ KΓ;∆`y:A and K4 ∈ K ·;∆′`x:A⊗B , and so (M ′, N ′) ∈ R2.

In the second case we M
x(y)−−−→ K2[K1[P] | S] = M ′. Process N can match this action, followed by

zero or more reductions: N
x(y)
=⇒ K4[K3[Q′] | S′] = N ′, where K2 =⇒ K4, K1 =⇒ K3, Q =⇒ Q′,

and S =⇒ S′. (Recall that K1 and K2 are parallel contexts, and so they are able to interact.) Theorem 5.1
ensures that these reductions are finite. Since ` K1[P] ≈ K1[Q] :: y:A, and because of τ -closedness, we
have ` K1[P] ≈ K3[Q′] :: y:A. Subject reduction (Theorem 3.1) ensures ` S, S′ :: x:B. Following the
output clause of ≈, we consider the closure of M ′ and N ′ with a process L such that y:A ` L :: −:1. Such
closures correspond to K2[(νy)(K1[P] | L) | S] and K4[(νy)(K3[Q′] | L) | S′], respectively. We verify
that the type of these closures is indeed x:B, as required by the output clause. Since ` K1[P],K3[Q′] :: y:A,
these processes can be composed with L, and we obtain

` (νy)(K1[P] | L), (νy)(K3[Q′] | L) :: −:1

The desired pair of processes can be obtained via an independent parallel composition with S, K2, S′, and
K4, respectively:

` K2[(νy)(K1[P] | L) | S],K4[(νy)(K3[Q′] | L) | S′] :: x:B

Hence,
(
K2[(νy)(K1[P] | L) | S], K4[(νy)(K3[Q′] | L) | S′]

)
∈ R2 and we are done. The reasoning

when N moves first is completely symmetric.

We now state τ -inertness, a property of transition systems which follows as a direct consequence of
the results of our framework, in particular, confluence (Theorem 5.2) and the definition of typed context
bisimilarity. Following Groote and Sellink [20], this property may be stated in a general way:

Definition 6.7 (τ -inertness). Let (P,−→) be a transition system, where P is a set of states and−→⊆ P×P .
Also, let ∼ stand for an equivalence relation on the elements of P . We say that (P,−→) is τ -inert with
respect to ∼ if P −→ P ′ implies P ∼ P ′.

τ -inertness is typically defined for labeled transition systems with a designated internal action τ , hence
its name. In our case, since the LTS and the reduction relation coincide, we can safely work with reductions,
and show that the class of well-typed processes is τ -inert with respect to ≈. Intuitively, τ -inertness says that
reduction does not change the behavior of a process. It is therefore a property relevant for verification, as it
ensures that well-typed processes can perform arbitrarily many reductions remaining in the same equivalence
class; this is strengthened by the fact that termination (Theorem 5.1) ensures that these reductions are only
finitely many. Adapting Definition 6.7 to our setting, we have:

Lemma 6.2 (τ -inertness wrt ≈). Let P be a process such that Γ; ∆ ` P :: T . Suppose P −→ P ′. Then
Γ; ∆ ` P ≈ P ′ :: T .

Proof. By coinduction, exhibiting an appropriate typed context bisimulation. Using Prop. 6.3, we work
under an empty left-hand side typing. We thus define a type-respecting relation containing (K[P],K[P ′]),
for any K ∈ KΓ;∆`T (letting Id to stand for the identity relation):

R = {(K[P],K[P ′]) : P −→ P ′ , K ∈ KΓ;∆`T } ∪ Id ∪W`T
Notice that by assumption, ` K[P] :: T ; by subject reduction (Theorem 3.1) ` K[P ′] :: T . We show that
R is a typed context bisimilarity. Suppose K[P] moves first, i.e., K[P]

α−−→ M , for some α,M . We must
show a matching action K[P ′]

α
=⇒ N . We distinguish two cases, when α 6= τ and when α = τ :

29

• If α 6= τ then, necessarily, the action is related to the type in type assignment T . Appropriate inversion
lemmas (Lemma 3.2) can be used to determine the actual label of α. Now, we know that ` K[P],K[P ′] ::
T and that the only difference betweenK[P] andK[P ′] is an internal action; sinceα 6= τ , these conditions
ensure that K[P ′] can match the action α and that there exists an N such that K[P ′]

α
=⇒ K ′[P ′′], where

K =⇒ K ′. The analysis concludes by a case analysis on the shape of T ; depending of T , the definition
of ≈ determines the actual shape of the derivatives that should be found in R. All cases are easy (output,
input, and replicated input require suitable process closures) and covered by the definition ofW`T , which
ensures that (M,N) ∈ W`T .

• If α = τ then there are two subcases: M ≡ K[P ′] (i.e., α is the same τ action that leads from K[P]
to K[P ′]) and M 6≡ K[P ′] (i.e., α corresponds to a different τ action from K[P]). In the first subcase,
K[P ′] can trivially match this reduction with zero reductions, i.e., K[P ′] =⇒ K[P ′] = N . Since the pair
(K[P ′],K[P ′]) is in R we are done. In the second subcase, K[P ′] is able to match this τ action because
of confluence (Theorem 5.2). Call τ1 the τ action from K[P] to K[P ′], and let α be τ2. That is, K[P]
can exercise both τ1 and τ2. Confluence ensures that if K[P] performs τ1 first, then its derivative K[P ′]
can still exercise τ2—this internal action is not discarded. Therefore, if K[P] challenges K[P ′] with τ2,
confluence ensures that K[P ′] can perform τ2, possibly preceded and followed by other internal actions.
A matching action K[P ′] =⇒ N , in which the weak transition contains τ2, thus exists, and it is easy to
see that (M,N) ∈ R, and we are done.

Now suppose that K[P ′] moves first, i.e., that K[P ′]
α−−→ N . We must show a matching action K[P]

α
=⇒

M . Since K[P ′] is a τ -derivative of K[P], it is easy to show that K[P] can always match any action from
K[P ′]: K[P] −→ K[P ′]

α−−→ N , for any α,N . This can be rewritten as K[P]
α

=⇒ N and we are done.

7. Applications

In this section, we first establish the soundness of proof conversions with respect to typed context bisim-
ilarity, and then introduce a behavioral characterization of type isomorphisms. Besides clarifying further the
intrinsic properties of the logical interpretation of session types, these applications illustrate the interplay
of typed context bisimilarity and the properties of the type system (subject reduction, progress, termination,
confluence).

7.1. Soundness of Proof Conversions
Recall that, by Definition 4.1, 'c stands for the congruence on typed processes induced by proof con-

versions. We now show soundness of 'c with respect to ≈, that is, we show that processes extracted from
proof conversions are typed contextually bisimilar.

Before formally stating and proving this claim, we provide some intuitions on it. Consider the process
equality (15) in Figure 4 (Page 12). It corresponds to the interplay of rules (Tcut) and (T⊕L), under typing
assumptions Γ; ∆1 ` D̂ :: x:C, Γ; ∆2, y:A, x:C ` Ê::T , and Γ; ∆2, y:A, x:C ` F̂ ::T . Letting ∆ =
∆1,∆2, we have:

Γ; ∆, y:A⊕B ` (νx)(D̂ |y.case(Ê, F̂))︸ ︷︷ ︸
(1)

'c y.case((νx)(D̂ | Ê), (νx)(D̂ | F̂))︸ ︷︷ ︸
(2)

:: T

with linear environments ∆1,∆2, and non-linear environment Γ, and types T,A,B,C.
Read from (1) to (2), this conversion can be interpreted as the “promotion” of the choice at y, which

causes D̂ to get “delayed” as a result. However, such a delay is seen to be only apparent once we examine

30

the individual typing of D̂ and the whole typing derivation. The first typing assumption says that D̂ is able to
offer behavior C at x (a free name in D̂), as long as it is placed in a context in which the behaviors described
by names in Γ,∆1 are available. The left-hand side typing for both (1) and (2) says that they can offer some
behavior T , as long as the behaviors declared in Γ,∆ and session A⊕B at y are provided. Crucially, since
x is private to (1), type assignment T cannot correspond to x:C. That is, even if D̂ is at the top-level in (1)
its behavior on x may not be immediately available. Also because of the left-hand side typing, we know that
(1) and (2) are only able to interact with some selection at y; only then, D̂ will be able to interact with either
Ê or F̂ , whose behavior depends on the presence of behavior C at x. A conversion of (1) into (2) could be
seen as a “behavioral optimization” if one considers that (2) has only one available prefix, while (1) has two
parallel components.

For all proof conversions, the apparent phenomenon of “prefix promotion” induced by proof conversions
can be explained along the above lines. In our soundness result (Theorem 7.1 below), the crucial point is
capturing the fact that some top-level processes may not be able to immediately exercise their behavior (cf.
D̂ in (1) above). Recall that IΓ;∆`T stands for the relation which collects pairs of processes with identical
left- and right-hand side typings. Also, we use the continuation relationsW`x:A (cf. Definition 6.6).

Theorem 7.1 (Soundness of Proof Conversions). Let P,Q be processes such that (i) Γ; ∆ ` D P :: T ;
(ii) Γ; ∆ ` E Q :: T ; (iii) P 'c Q. Then, Γ; ∆ ` P ≈ Q ::T .

Proof. By coinduction, exhibiting appropriate typed context bisimulations for each proof conversion. In the
bisimulation game, we exploit termination of well-typed processes (Theorem 5.1) to ensure that actions can
be matched with finite weak transitions, and subject reduction (Theorem 3.1) to ensure type preservation
under reductions.

We detail the case for the first proof conversion in Figure D.6 —see Appendix C.1 (Page 60) for other
cases. This proof conversion corresponds to the interplay of rules (T⊗R) and (Tcut). We have to show that
Γ; ∆ `M ≈ N :: z:A⊗B where

∆ = ∆1,∆2,∆3 Γ; ∆1 ` D̂ :: x:C Γ; ∆2, x:C ` Ê :: y:A Γ; ∆3 ` F̂ :: z:B (25)
M = (νx)(D̂ | z(y).(Ê | F̂)) N = z(y).((νx)(D̂ | Ê) | F̂)

Using Proposition 6.3, we have to show that for everyK ∈ KΓ;∆, we have ` K[M] ≈ K[N] :: z:A⊗B. In
turn, this implies exhibiting a typed context bisimulation R containing the pair (K[M],K[N]). We define
R =W`z:A⊗B ∪ S ∪ S−1, with

S = {(K[M ′],K[N]) : M =⇒M ′, K ∈ KΓ;∆}

andW`z:A⊗B is as in Definition 6.6. Notice that S is a type-respecting relation indexed by ` z:A⊗ B. In
fact, using the typings in (25)—with Γ = ∆ = ∅—and exploiting subject reduction (Theorem 3.1), it can be
checked that for all (P,Q) ∈ S both ` P :: z:A⊗B and ` Q :: z:A⊗B can be derived.

We now show thatR is a typed context bisimulation. Pick any K ∈ KΓ;∆. Using Definition 6.5, we can
assume K = (νũ, x̃)(KΓ | K∆ | [·]) where

• KΓ ≡
∏
i∈I !ui(yi).Ri, with ` Ri :: yi:Di, for every ui:Di ∈ Γ;

• K∆ ≡
∏
j∈J Sj , with ` Sj :: xj :Cj , for every xj :Cj ∈ ∆.

Clearly, (K[M],K[N]) ∈ S , and so it is in R. Now, suppose K[M] moves first: K[M]
α−−→ M?

1 . We
have to find a matching action α from K[N], i.e., K[N]

α
=⇒ N?

1 . Since ` K[M] :: z:A⊗ B, we have two
possible cases for α:

31

1 Case α = τ . We consider the possibilities for the origin of the reduction:

(a) KΓ
τ−−→ K ′Γ and K[M]

τ−−→ K ′[M]. However, this cannot be the case, as by construction KΓ

corresponds to the parallel composition of input-guarded replicated processes which cannot evolve
on their own.

(b) K∆
τ−−→ K ′∆ and K[M]

τ−−→ K ′[M]. Then, for some l ∈ J , Sl
τ−−→ S′l :

K[M]
τ−−→ (νũ, x̃)(KΓ | K ′∆ |M) = K ′[M] = M?

1

Now, context K is the same in K[N]. Then K∆ occurs identically in K[N], and this reduction can
be matched by a finite weak transition (Theorem 5.1):

K[N] =⇒ (νũ, x̃)(KΓ | K ′′∆ | N) = K ′′[N] = N?
1

By subject reduction (Theorem 3.1), ` S′l :: xl:Cl; hence, K ′,K ′′ are in KΓ;∆. Hence, the pair
(K ′[M],K ′′[N]) is in S (as M =⇒M) and so it is inR.

(c) M τ−−→ M ′ and K[M]
τ−−→ K[M ′]. Since M = (νx)(D̂ | z(y).(Ê | F̂)), the only possibility is that

there is a D̂1 such that D̂ τ−−→ D̂1 and M ′ = (νx)(D̂1 | z(y).(Ê | F̂)). This way,

K[M]
τ−−→ (νũ, x̃)(KΓ | K∆ |M ′) = K[M ′] = M?

1

We observe that K[N] cannot match this action, but K[N] =⇒ K[N] is a valid weak transition.
Hence, N?

1 = K[N]. By subject reduction (Theorem 3.1), we infer that ` K[M ′] :: z:A⊗B. We use
this fact to observe that the pair (K[M ′],K[N]) is included in S. Hence, it is inR.

(d) There is an interaction between M and KΓ or between M and K∆: this is only possible by the
interaction of D̂ with KΓ or K∆ on names in ũ, x̃. Again, the only possible weak transition from
K[N] matching this reduction is K[N] =⇒ K[N], and the analysis proceeds as in the previous case.

2 Case α 6= τ . Then the only possibility, starting from K[M], is an output action of the form α = z(y).
This action can only originate in M :

K[M]
z(y)−−→ (νx̃, ũ)(KΓ | K∆ | (νx)(D̂ | (νy)(Ê | F̂))) = M?

1

Process K[N] can match this action via the following finite weak transition:

K[N]
z(y)
=⇒ (νx̃, ũ)(K ′Γ | K ′∆ | (νy)((νx)(D̂′ | Ê′) | F̂ ′)) = N?

1

Observe how N?
1 reflects the changes in K[N] due to the possible reductions before and after the output

action. By definition of ≈ (output case), we consider the composition of M?
1 and N?

1 with any V such
that y:A ` V :: −:1. Using the typings in (25) and subject reduction (Theorem 3.1), we infer both

`M?
2 = (νx̃, ũ)(KΓ | K∆ | (νx)(D̂ | (νy)(Ê | V | F̂))) :: z:B

` N?
2 = (νx̃, ũ)(K ′Γ | K ′∆ | (νy)((νx)(D̂′ | Ê′ | V) | F̂ ′)) :: z:B

Hence, the pair (M?
2 , N

?
2) is inW`z:A⊗B and so it is inR.

Now suppose that K[N] moves first: K[N]
α−−→ N?

1 . We have to find a matching action α from K[M]:
K[M]

α
=⇒ M?

1 . Similarly as before, there are two cases: either α = τ or α = z(y). The former is as
detailed before; the only difference is that reductions from K[N] can only be originated in K∆; these are
matched by K[M] with finite weak transitions originating in both K and in M . We thus obtain pairs of
processes in S−1. The analysis for the case for output mirrors the given above and is omitted.

32

7.2. A Behavioral Characterization of Session Type Isomorphisms
In type theory, types A and B are called isomorphic if there are morphisms πA of B ` A and πB of

A ` B which compose to the identity in both ways—see, e.g., [18]. For instance, in the λ-calculus the
types A × B and B × A are isomorphic since we can construct terms M = λx:A × B.〈π2x, π1x〉 and
N = λx:B × A.〈π2x, π1x〉, respectively of types A × B → B × A and B × A → A × B, such that both
compositions λx:B × A.(M (N x)) and λx:A × B.(N (M x)) are equivalent (up to η-conversion) to the
identity λx:B ×A.x and λx:A×B.x.

We adapt this notion to our setting, by using proofs as morphisms, and by using typed context bisimilarity
to account for isomorphisms in linear logic.

Given a sequence of names x̃ = x1, . . . , xn, below we write P 〈x̃〉 to denote a process such that fn(P) =
{x1, . . . , xn}.

Definition 7.1 (Type Isomorphism). Two (session) types A and B are called isomorphic, noted A ' B, if,
for any names x, y, z, there exist processes P 〈x,y〉 and Q〈y,x〉 such that:

(i) · ;x:A ` P 〈x,y〉 :: y:B;

(ii) · ; y:B ` Q〈y,x〉 :: x:A;

(iii) · ;x:A ` (νy)(P 〈x,y〉 | Q〈y,z〉) ≈ [x↔z] :: z:A; and

(iv) · ; y:B ` (νx)(Q〈y,x〉 | P 〈x,z〉) ≈ [y↔z] :: z:B.

Thus, intuitively, ifA,B are service specifications then by establishingA ' B one can claim that having
A is as good as having B, because we can build one from the other using an isomorphism. Isomorphisms
in linear logic can then be used to simplify/transform service interfaces in the π-calculus. They can also
help validating our interpretation with respect to basic linear logic principles. As an example, let us consider
multiplicative conjunction ⊗. A basic linear logic principle is A⊗B ` B⊗A. Our interpretation of A⊗B
may appear asymmetric as, in general, a channel of type A⊗B is not typable by B⊗A. Theorem 7.2 below
states the symmetric nature of ⊗ as a type isomorphism: symmetry is realized by a process which coerces
any session of type A⊗B to a session of type B ⊗A.

Theorem 7.2. Let A,B, and C be any type, as in Def 3.1. Then the following hold:
(i) A⊗B ' B ⊗A

(ii) (A⊕B)(C ' (A(C) N (B(C)
(iii) !(ANB) ' !A⊗!B

Proof. We give details for the proof of (i) above; see Appendix C.2, Page 65, for further details.
We check conditions (i)-(iv) of Def. 7.1 for processes P 〈x,y〉, Q〈y,x〉 defined as

P 〈x,y〉 = x(u).y(n).([x↔n] | [u↔y])

Q〈y,x〉 = y(w).x(m).([y↔m] | [w↔x])

Checking (i)-(ii), i.e., · ;x:A⊗B ` P 〈x,y〉::y:B ⊗A and · ; y:B ⊗A ` Q〈y,x〉::x:A⊗B is easy; rule (Tid)
ensures that both typings hold for any A,B. We sketch only the proof of (iii); the proof of (iv) is analogous.
Let M = (νy)(P 〈x,y〉 | Q〈y,z〉) and N = [x↔z]; we need to show · ;x:A⊗ B ` M ≈N :: z:A⊗ B. By
Proposition 6.3, we have to show that for every K ∈ K · ;x:A⊗B , we have ` K[M] ≈ K[N] :: z:A ⊗ B.
In turn, this implies exhibiting a typed context bisimulation R containing (K[M],K[N]). Letting S =
{(R1, R2) : K[M] =⇒ R1, K[N] =⇒ R2}, we set R=W`z:A⊗B ∪ S ∪ S−1. Following expected lines,
R can be shown to be a typed context bisimulation.

33

8. Related Work

Logical Relations in Concurrency. In a concurrent/process calculi setting, logical relations (or closely re-
lated techniques) have been investigated by Berger, Honda, and Yoshida [47, 3, 4], Sangiorgi [41], Caires [8],
and Boudol [7]. None of these works considers session types, and so the logical relations proposed in such
works are very different from ours. Boudol [7] relies on the classical realizability technique (together with a
type and effect system) to establish termination in a higher-order imperative language. Caires [8] proposes
a semantic approach to proving soundness for type systems for concurrency, by relying on a spatial logic
interpretation of types. More related to our developments are works by Yoshida, Berger, Honda [47] and by
Sangiorgi [41], which aim at identifying terminating fragments of the π-calculus by using types, relying on
arguments based on logical relations. The logical relations framework developed in [47] is extended in [3, 4]
to the case of a second-order, polymorphic π-calculus. A main result in [3, 4] is a proof of termination using
the method of reducibility candidates; while [3] reports a relational parametricity result, [4] puts forward
a behavioral theory based on generic transitions and a fully abstract embedding of System F. All of these
works consider typing disciplines different from session types; consequently, associated semantic interpre-
tations of types are very different from ours, and rely on constraints on the syntax and the types of processes.
In sharp contrast to [47, 41], which aim at type disciplines that guarantee termination, here we started from a
well-established type discipline for the π-calculus and have used linear logical relations to show termination
and confluence of well-typed processes. We have shown how the interpretation of intuitionistic linear logic
as session types in [11] leads to intuitive logical relations, naturally defined on the structure of types. In this
sense, our approach is more principled than in [47, 41], as it is not an adaptation of the method, but rather
an instantiation of the method on our canonical linear type structure.

Logical Interpretations of Session Types. Dal Lago and Di Giamberardino [14] introduce an interpretation
of session types as soft linear logic propositions [28]. As a result, the exponential “!” is treated following
a non canonical discipline that uses two different typing environments. Hence, typing rules and judgments
in [14] are rather different from ours. A bound on the length of reductions starting from well-typed-processes
is obtained; the proof uses techniques from Implicit Computational Complexity. Neither confluence, obser-
vational equivalences, nor issues of inference permutability and type isomorphisms are addressed in [14].
Although here we do not provide a similar bound, it is remarkable that our proof of termination follows
only the principles and properties of [11]; in contrast to [14], our proof appeals to well-known technical
devices, and allows us to retain a standard, intuitive treatment of “!”. This is particularly desirable for
extensions/generalizations of our logical interpretation of session types, such as the proposed in [45, 35].

Loosely related is Mazurak and Zdancewic’s Lolliproc [29], a functional language with support for
concurrency based on control operators. Lolliproc’s operational semantics is based on a runtime process
calculus; thread communication is defined in terms of protocol types which are given a classic linear logic
interpretation. As in our case, type soundness, strong normalization, and confluence results hold for Lol-
liproc; however, the details of the associated proof techniques are rather different from ours.

Determinacy and Confluence in Process Calculi. In term rewriting systems such as the λ-calculus, deter-
minacy and confluence are well-understood issues, and typically rely on (unlabeled) reduction semantics.
For process calculi, a semantics given in terms of labelled transition systems is often useful, for it describes
the interaction of processes with their environment. As a result, notions of determinacy and confluence for
process calculi typically account for those labels, thus setting a major difference with respect to traditional
notions. It is worth noticing that our notion of confluence (Definition 5.2) considers only weak transitions
based on internal behavior, and so it is closer to classical definitions of confluence rather than to the defi-
nitions used in process calculi. Early studies of determinacy and confluence for process calculi are due to

34

Milner, in the setting of CCS [30]; his interest was on proper definitions of such notions, focusing on syn-
tactic conditions on process constructs so as to build determinate, confluent systems by construction. There
is a close relationship between determinacy, confluence, τ -inertness and the given notion of equivalence;
Groote and Sellink [20] provide a general study on such a relationship, focusing on the impact of such no-
tions on process verification. Milner’s approach to confluence was extended to the π-calculus by Walker
and Philippou [36], and by Nestmann [32] who characterizes (forms of) confluence in terms of so-called
port uniqueness for polarized name-passing, which is ensured by static typing. Most related to our work
is the work by Kouzapas et al. [27], which adapts Walker and Philippou’s techniques to establish session
determinacy and confluence for a session-typed asynchronous π-calculus. The above mentioned differences
in the definition of determinacy and confluence prevent detailed comparisons with our confluence result,
which relies on reductions and is shown using logical relations.

Typed Behavioral Equivalences. Previous works on behavioral equivalences for typed process calculi have
considered a number of different typing disciplines. For instance, behavioral theories for calculi with linear
types (e.g., [26]), input/output types (e.g., [6, 37, 16]), subtyping with name matching (e.g., [21]), and
polymorphic types (e.g., [38]) have been put forward. Still, the only work on behavioral equivalences for
binary session-typed processes we are aware of is [27]. It studies the behavioral theory of a π-calculus with
asynchronous, event-based binary session communication. The aim is to capture the distinction between
order-preserving communications (those inside already established connections) and non-order-preserving
communications (those outside such connections). The behavioral theory in [27] accounts for principles for
prefix commutation that appear similar to those induced by our proof conversions. However, the origin and
nature of these commutations are quite different. In fact, in [27] prefix commutation arises from the above-
mentioned distinction, whereas commutations in our (synchronous) framework are due to causality relations
captured by types. Loosely related to typed context bisimilarity is [48], where a form of linear bisimilarity
is proposed; following a linear type structure, it treats some visible actions as internal actions, thus leading
to an equivalence larger than standard bisimilarity which is a congruence.

9. Concluding Remarks

In this paper, we have introduced a theory of linear logical relations and a notion of typed behavioral
equivalences for session-typed, concurrent processes. These developments extend the interpretation of linear
logic propositions as session types developed by Caires and Pfenning in [11].

Our theory of linear logical relations is remarkably similar to that for functional languages; although in
our setting session types are assigned to names (and not to terms), our linear logical relations are defined on
the structure of types, relying both on process reductions and labeled transitions. A main application of this
theory is a proof that well-typed processes are both strongly normalizing (Theorem 5.1) and confluent (The-
orem 5.2). In practice, certifying termination and confluence of session-typed programs is important. We
believe the extended correctness guarantees given by our results could be highly beneficial for the increas-
ingly growing number of practical implementations (libraries, programming language extensions) based on
session types foundations—see, e.g., [25, 33, 39].

We have also presented a behavioral theory for session-typed processes. We introduced typed context
bisimilarity, a novel labeled bisimilarity over typed processes, and studied its properties. Our definition
follows from the intuitive meaning of type judgments, and is stated in the style of conventional defini-
tions for untyped processes. In addition to studying its main properties, we have illustrated this typed
observational equivalence in two applications, which strengthen the properties of the logic interpretation
established in [11]. On the one hand, we have shown soundness of proof conversions with respect to ob-
servational equivalence—an issue left open in [11] (Theorem 7.1). On the other hand, we studied type

35

isomorphisms resulting from linear logic equivalences in our setting (Theorem 7.2). The basic properties of
the interpretation—especially, the combination of subject reduction and termination—were of the essence
in the proofs of both applications.

There are some intuitive similarities in the definitions used in formalizing our theory of linear logical
relations and those required for developing our behavioral theory. We have given a formal connection be-
tween the two topics in [9, 10], where the linear logic relations developed here are generalized to the case
of parametric polymorphism. In this extended setting, existential and universal quantification over types are
interpreted as a form of session type-passing; using logical relations we have characterized barbed congru-
ence in a sound and complete way. In future work, we plan to adapt the results here presented to the case of
the interpretation of session types into classical linear logic, as defined in [12, § 5] and [46].

Acknowledgments. We thank the anonymous reviewers for their comments and suggestions. This research
was supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and
Technology) through grants INTERFACES NGN-44 / 2009 (Carnegie Mellon Portugal Program), SFRH /
BD / 33763 / 2009 (Toninho), SFRH / BPD / 84067 / 2012 (Pérez), and CITI.

References

[1] S. Abramsky. Computational interpretations of linear logic. Theor. Comput. Sci., 111:3–57, April
1993.

[2] A. Barber. Dual intuitionistic linear logic. Technical report, LFCS-96-347, Univ. of Edinburgh, 1996.

[3] M. Berger, K. Honda, and N. Yoshida. Genericity and the pi-calculus. In FoSSaCS, volume 2620 of
Lecture Notes in Computer Science, pages 103–119. Springer, 2003.

[4] M. Berger, K. Honda, and N. Yoshida. Genericity and the pi-calculus. Acta Inf., 42(2-3):83–141, 2005.

[5] M. Boreale. On the expressiveness of internal mobility in name-passing calculi. Theor. Comput. Sci.,
195:205–226, March 1998.

[6] M. Boreale and D. Sangiorgi. Bisimulation in name-passing calculi without matching. In LICS, pages
165–175, 1998.

[7] G. Boudol. Typing termination in a higher-order concurrent imperative language. Inf. Comput.,
208(6):716–736, 2010.

[8] L. Caires. Logical semantics of types for concurrency. In CALCO 2007, volume 4624 of Lecture Notes
in Computer Science, pages 16–35. Springer, 2007.

[9] L. Caires, J. A. Pérez, F. Pfenning, and B. Toninho. Relational parametricity for polymorphic session
types. Technical report, CMU-CS-12-108, Carnegie Mellon Univ., Apr 2012.

[10] L. Caires, J. A. Pérez, F. Pfenning, and B. Toninho. Behavioral polymorphism and parametricity in
session-based communication. In M. Felleisen and P. Gardner, editors, ESOP, volume 7792 of Lecture
Notes in Computer Science, pages 330–349. Springer, 2013.

[11] L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In CONCUR’2010,
volume 6269 of LNCS, pages 222–236. Springer, 2010.

36

[12] L. Caires, F. Pfenning, and B. Toninho. Linear logic propositions as session types. Math. Struct. in
Comp. Sci., 2014. To appear - http://www.cs.cmu.edu/˜btoninho/mscs12.pdf.

[13] B.-Y. E. Chang, K. Chaudhuri, and F. Pfenning. A judgmental analysis of linear logic. Technical report,
CMU-CS-03-131R, Carnegie Mellon University, 2003.

[14] U. Dal Lago and P. Di Giamberardino. Soft session types. In Proc. of 18th Workshop on Expressiveness
in Concurrency – EXPRESS’11, volume 64 of EPTCS, pages 59–73, 2011.

[15] R. Demangeon, D. Hirschkoff, and D. Sangiorgi. Mobile processes and termination. In Semantics and
Algebraic Specification, volume 5700 of LNCS, pages 250–273. Springer, 2009.

[16] Y. Deng and D. Sangiorgi. Towards an algebraic theory of typed mobile processes. Theor. Comput.
Sci., 350(2-3):188–212, 2006.

[17] M. Dezani-Ciancaglini and U. de’Liguoro. Sessions and session types: An overview. In WS-FM 2009,
volume 6194 of Lecture Notes in Computer Science, pages 1–28. Springer, 2010.

[18] R. Di Cosmo. A short survey of isomorphisms of types. Mathematical Structures in Computer Science,
15(5):825–838, 2005.

[19] J.-Y. Girard and Y. Lafont. Linear logic and lazy computation. In TAPSOFT’87, Vol.2, volume 250 of
LNCS, pages 52–66. Springer, 1987.

[20] J. F. Groote and M. P. A. Sellink. Confluence for process verification. Theor. Comput. Sci., 170(1-
2):47–81, 1996.

[21] M. Hennessy and J. Rathke. Typed behavioural equivalences for processes in the presence of subtyping.
Mathematical Structures in Computer Science, 14(5):651–684, 2004.

[22] K. Honda. Types for dynamic interaction. In CONCUR, volume 715 of Lecture Notes in Computer
Science, pages 509–523. Springer, 1993.

[23] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for structured
communication-based programming. In ESOP’98, volume 1381 of LNCS, pages 122–138. Springer,
1998.

[24] W. A. Howard. The formulae-as-types notion of construction. Unpublished note. An annotated version
appeared in: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, 479–
490, Academic Press (1980), 1969.

[25] R. Hu, N. Yoshida, and K. Honda. Session-based distributed programming in java. In Proc. of ECOOP,
volume 5142 of LNCS, pages 516–541. Springer, 2008.

[26] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. In POPL, pages 358–371,
1996.

[27] D. Kouzapas, N. Yoshida, R. Hu, and K. Honda. On asynchronous session semantics. In Proc. of
FMOODS-FORTE’2011, volume 6722 of LNCS, pages 228–243. Springer, 2011.

[28] Y. Lafont. Soft linear logic and polynomial time. Theor. Comput. Sci., 318(1-2):163–180, 2004.

37

http://www.cs.cmu.edu/~btoninho/mscs12.pdf

[29] K. Mazurak and S. Zdancewic. Lolliproc: to concurrency from classical linear logic via curry-howard
and control. In ICFP’10, pages 39–50. ACM, 2010.

[30] R. Milner. Communication and concurrency. Prentice Hall, 1995.

[31] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, part I/II. Inf. Comput., 100(1):1–
77, 1992.

[32] U. Nestmann. On Determinacy and Nondeterminacy in Concurrent Programming. PhD thesis, Tech-
nische Fakultat, Universitat Erlangen, 1996.

[33] N. Ng, N. Yoshida, O. Pernet, R. Hu, and Y. Kryftis. Safe parallel programming with session java. In
Proc. of COORDINATION, volume 6721 of LNCS, pages 110–126. Springer, 2011.

[34] J. A. Pérez, L. Caires, F. Pfenning, and B. Toninho. Linear logical relations for session-based con-
currency. In ESOP, volume 7211 of Lecture Notes in Computer Science, pages 539–558. Springer,
2012.

[35] F. Pfenning, L. Caires, and B. Toninho. Proof-carrying code in a session-typed process calculus. In
Proc. of CPP ’11, volume 7086 of LNCS, pages 21–36. Springer, 2011.

[36] A. Philippou and D. Walker. On confluence in the pi-calculus. In ICALP, volume 1256 of Lecture
Notes in Computer Science, pages 314–324. Springer, 1997.

[37] B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathematical Structures
in Computer Science, 6(5):409–453, 1996.

[38] B. C. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic pi-calculus. J. ACM,
47(3):531–584, 2000.

[39] R. Pucella and J. A. Tov. Haskell session types with (almost) no class. In Proc. of ACM SIGPLAN
Symposium on Haskell, pages 25–36. ACM, 2008.

[40] D. Sangiorgi. pi-calculus, internal mobility, and agent-passing calculi. Theor. Comput. Sci.,
167(1&2):235–274, 1996.

[41] D. Sangiorgi. Termination of processes. Mathematical Structures in Computer Science, 16(1):1–39,
2006.

[42] D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cambridge University
Press, New York, NY, USA, 2001.

[43] R. Statman. Logical relations and the typed lambda-calculus. Information and Control, 65(2/3):85–97,
1985.

[44] W. W. Tait. Intensional Interpretations of Functionals of Finite Type I. J. Symbolic Logic, 32:198–212,
1967.

[45] B. Toninho, L. Caires, and F. Pfenning. Dependent session types via intuitionistic linear type theory.
In Proc. of PPDP ’11, pages 161–172, New York, NY, USA, 2011. ACM.

[46] P. Wadler. Propositions as sessions. In P. Thiemann and R. B. Findler, editors, ICFP, pages 273–286.
ACM, 2012.

38

[47] N. Yoshida, M. Berger, and K. Honda. Strong normalisation in the pi -calculus. Inf. Comput.,
191(2):145–202, 2004.

[48] N. Yoshida, K. Honda, and M. Berger. Linearity and bisimulation. J. Log. Algebr. Program., 72(2):207–
238, 2007.

39

Appendix A. Proofs of Section 5 (Logical Relations)

Below, we write P 6−→ to mean that P cannot reduce; it can perform visible actions, though. Also, we
write P −→k P ′ to denote a reduction sequence of length k from P to P ′. Given a process P⇓, we write
mlen(P) to stand for the length of the longest reduction sequence originating from P . Given terminating
processes P1, . . . , Pn, notation mlen(P1, . . . , Pn) stands for mlen(P1) + · · ·+ mlen(Pn).

Appendix A.1. Proof of Proposition 5.7
We repeat the statement in Page 17:

Proposition Appendix A.1 (5.7). Let P,Q be well-typed processes. If P ∈ L[T] and P ≡! Q then
Q ∈ L[T].

Proof. By induction on the definition of P ≡! Q (Def. 5.3). Given Prop 5.5, it suffices to consider only the
sharpened replication axioms. In each case, we use an auxiliary induction on the structure of T , which relies
on Prop 5.2 and on the operational correspondence between P and Q given by Prop 5.1.

• Axiom (1): Then we have two sub-cases. In the first one, we have

P = (νu)(!u(z).P1 | (νy)(P2 | P3))

Q = (νy)((νu)(!u(z).P1 | P2) | (νu)(!u(z).P1 | P3))

Hence, sub-process !u(z).P1 has been distributed to the unguarded processes P2 and P3. We proceed
by induction on the structure of T . Each case proceeds by showing that Q satisfies termination, well-
typedness, and operational correspondence requirements stated in Def 5.4. For the latter, we use Prop
5.1(1) and 5.1(2). We have six cases to check; we detail only some of them as the rest is similar.

Case P ∈ L[z:1]. Then P⇓ and ·; · ` P :: z:1 and for all P ′ such that P =⇒ P ′ and P ′ 6−→ it implies
that P ′ ≡! 0. First, by Prop 5.2, we have that Q⇓. Now, since ·; · ` P :: z:1 it is easy to show that
there exists a typing derivation for ·; · ` Q :: z:1. Finally, by Prop 5.1(1), we know thatQ can match
any reduction from P . Therefore, there exists a Q′ such that Q =⇒ Q′ and Q′ 6−→ and P ′ ≡! Q

′.
By transitivity of ≡!, we have that Q′ ≡! 0 and so Q ∈ L[z:1], as desired.

Case P ∈ L[z:A(B]. Then P⇓ and ·; · ` P :: z:A(B. Hence, by Prop 5.6, P has an input action on z.

Moreover, by Def 5.4, for all P ′, y such that P
z(y)
=⇒ P ′ it implies that ∀R ∈ L[y:A].(νy)(P ′ | R) ∈

L[z:B]. First, by Prop 5.2, we have that Q⇓. Now, since ·; · ` P :: z:A(B, it is easy to show that
there exists a typing derivation for ·; · ` Q :: z:A(B. Finally, by Prop 5.1(1) and 5.1(2), we know

that Q can match any reduction/transition from P . Therefore, there exists a Q′ such that Q
z(y)
=⇒ Q′

and P ′ ≡! Q
′. Now, by induction hypothesis we have that ∀R ∈ L[y:A].(νy)(Q′ | R) ∈ L[z:B],

and so Q ∈ L[z:A(B], as desired.

Case P ∈ L[z:A⊗B]. Then P⇓ and ·; · ` P :: z:A ⊗ B. Hence, by Prop 5.6, P has an output action

on z. Moreover, by Def 5.4, for all P ′, y such that P
z(y)
=⇒ P ′ it implies that there exist P1, P2 such

that P ′ ≡! P1 | P2 and P1 ∈ L[y:A] and P2 ∈ L[z:B]. First, by Prop 5.2, we have that Q⇓. Now,
since ·; · ` P :: z:A ⊗ B, it is easy to show that there exists a typing derivation for ·; · ` Q ::
z:A⊗B. Now, by Prop 5.1(1) and 5.1(2), we know that Q can match any reduction/transition from

P . Therefore, there exists a Q′ such that Q
z(y)
=⇒ Q′ and P ′ ≡! Q

′. Now, by transitivity we have
that Q′ ≡! P1 | P2, and so Q ∈ L[z:A⊗B], as desired.

40

Case P ∈ L[z:!A]. Similar to the case P ∈ L[z:1].

The second sub-case is symmetric to the first one, with P defined as Q and Q defined as P . As such,
sub-process !u(z).P1 has been “factorized” from the process expression. The analysis follows the lines of
the first case and is omitted.

• Axiom (2): Then we have two sub-cases. In the first one, we have:

P = (νu)(!u(y).P1 | (νv)(!v(z).P2 | P3))

Q = (νv)((!v(z).(νu)(!u(y).P1 | P2)) | (νu)(!u(y).P1 | P3))

Similarly as before, sub-process !u(y).P1 has been distributed to the unguarded process P3 and to the
input-guarded replicated process !v(z).P2. We proceed by induction on the structure of T . Each case
proceeds by showing that Q satisfies the requirements stated in Def 5.4. The analysis mirrors the one
given above for Axiom (1), using Prop 5.2, observing that typability of P under some type assignment T
implies typability of Q under T , and exploiting the operational correspondence between P and Q given
by Prop 5.1(1) and 5.1(2).

In the second sub-case, P defined as Q and Q defined as P . As such, sub-process !u(y).P1 has been
factorized from the process expression. The analysis follows the lines of the first sub-case and is omitted.

• Axiom (3): Then we have two sub-cases. In the first one, we have

P = (νu)(!u(y).P1 | P2) with u 6∈ fn(P2) Q = P2

Hence, sub-process !u(y).P1 is discarded, as it cannot be invoked by P2. We proceed by induction on the
structure of T . Each case proceeds by showing that Q satisfies the requirements stated in Def 5.4. The
crucial point is to observe that since u 6∈ fn(P2) then every reduction/transition from P originates in P2,
and so they can be trivially matched by Q. As a consequence, P belongs to L[z:T], for some z 6= u. We
have six cases to check; we detail two of them, the others are similar:

Case P ∈ L[z:1]. Then P⇓ and ·; · ` P :: z:1 and for all P ′ such that P =⇒ P ′ and P ′ 6−→ it implies
that P ′ ≡! 0. First, by Prop 5.2, we have that Q⇓. Now, since ·; · ` P :: z:1 it is possible to show
that ·; · ` Q :: z:1. Notice also that since u 6∈ fn(P2), none of the reductions from P to P ′ is a
synchronization on u. Hence, every reduction of P originates in P2, and since Q = P2, the thesis
trivially holds.

Case P ∈ L[z:A(B]. Then P⇓ and ·; · ` P :: z:A(B. Hence, by Prop 5.6, P has an input action on z.

Moreover, by Def 5.4, for all P ′, y such that P
z(y)
=⇒ P ′ it implies that ∀R ∈ L[y:A].(νy)(P ′ | R) ∈

L[z:B]. First, by Prop 5.2, we have that Q⇓. Now, since ·; · ` P :: z:A(B then it can be shown
that ·; · ` Q :: z:A(B. Now, since u 6∈ fn(P2), none of the reductions/transition from P to P ′

is a synchronization on u. Hence, every reduction and transition of P originates in P2, and since
Q = P2, we immediately infer that Q ∈ L[z:A(B], as desired.

The second sub-case is the symmetric of the first one, with P defined as Q and Q defined as P . That
is, process Q is the extension of P = P2 with a process !u(y).P1 that it cannot invoke. Notice that we
assume well-typed processes, and so the extended process Q is well-typed as well. The analysis follows
the lines of the first case and is omitted.

41

Appendix A.2. Proof of Proposition 5.8
We repeat the statement in Page 18:

Proposition Appendix A.2 (5.8). Let · ; · ` P :: z:A be a well-typed process. If P −→x P1 and P −→y P2

and P1 6= P2 then there exist P ′1, P
′
2 such that P1 −→y P

′
1 and P2 −→x P

′
2.

Proof. By a case analysis on the different ways in which two different reductions on private names can arise
from the process P . By assumption, P ≡ (νñ)P0 where x and y occur in ñ and both

(νñ)P0 −→x (νñ)P ′0 = P1 (νñ)P0 −→y (νñ)P ′′0 = P2

Observe that Theorem 3.1 ensures both · ; · ` P1 :: z:A and · ; · ` P2 :: z:A. Both these reductions are
inferred by the following reduction rule (cf. Figure 1):

P → P ′

(νz)P → (νz)P ′

We must show that there exist P ′1, P
′
2 such that P1 −→y P

′
1 and P2 −→x P

′
2. In our process model there

are four main possibilities for enabling a reduction (namely, communication, a shared server invocation,
a choice, and forwarding) which are realized by five reduction rules. Consequently, the required analysis
involves 16 cases, resulting from the combination of these four main possibilities, using typing inversion.
In all cases, we exploit Theorem 3.1 (to ensure type preservation) and Theorem 3.2 (which guarantees that
processes are not stuck and reductions can proceed).

Case 1. The reduction on x is a communication; the reduction on y is a choice.
Then we would have two possibilities:

P ≡(νñ)(x〈w〉.(P1 | P2) | x(v).P3 | y.inl;P4 | y.case(P5, P6) | Rz)
P ≡(νñ)(x〈w〉.(P1 | P2) | x(v).P3 | y.inr;P4 | y.case(P5, P6) | Rz)

for some P1, . . . , P6, Rz , with x, y, and w occurring in ñ. Here and in the following, we write Rz
to denote the free occurrence of name z. Let us consider only the first possibility; the second is
analogous. The two enabled reductions correspond to independent sessions which are inherently
non interfering from each other:

P −→x (νñ)(P1 | P2 | P3{w/v} | y.inl;P4 | y.case(P5, P6) | Rz) = P ′

P −→y (νñ)(x〈w〉.(P1 | P2) | x(v).P3 | P4 | P5 | Rz) = P ′′

Clearly, one reduction does not preclude the other:

P ′ −→y (νñ)(P1 | P2 | P3{w/v} | P4 | P5 | Rz)
P ′′ −→x (νñ)(P1 | P2 | P3{w/v} | P4 | P5 | Rz)

and thus the thesis follows.

Case 2. The reduction on x is a communication; the reduction on y is a forwarding.
Then we would have:

P ≡ (νñ)(x〈w〉.(P1 | P2) | x(v).P3 | [y↔ l] | Rz)

42

for some P1, . . . , P3, Rz , with x, y, and w occurring in ñ. Also in this case, one reduction does not
preclude the other. We have:

P −→x (νñ)(P1 | P2 | P3{w/v} | [y↔ l] | Rz)
−→y (νñ)(P1 | P2 | P3{w/v} | Rz){l/y}

P −→y (νñ)(x〈w〉.(P1 | P2) | x(v).P3 | Rz){l/y}
−→x (νñ)(P1 | P2 | P3{w/v} | Rz){l/y}

and thus the thesis follows.

Case 3. The reduction on x is a communication; the reduction on y is a server invocation.
Then we would have:

P ≡ (νñ)(x〈w〉.(P1 | P2) | x(v).P3 | y〈l〉.P4 | !y(u).P5 | Rz)

for some P1, . . . , P5, Rz , with x, y, w, and l occurring in ñ. Also in this case, one reduction does
not preclude the other. We have:

P −→x (νñ)(P1 | P2 | P3{w/v} | y〈l〉.P4 | !y(u).P5 | Rz)
−→y (νñ)(P1 | P2 | P3{w/v} | P4 | P5{l/u} | !y(u).P5 | Rz)

P −→y (νñ)(x〈w〉.(P1 | P2) | x(v).P3 | P4 | P5{l/u} | !y(u).P5 | Rz)
−→x (νñ)(P1 | P2 | P3{w/v} | P4 | P5{l/u} | !y(u).P5 | Rz)

and thus the thesis follows.

Case 4. The reduction on x is a communication; the reduction on y is also a communication.
This case is similar to Case 3.

Case 5. Both reductions, on x and y, are server invocations.
There are two sub-cases. In the first one we would have invocations to two different servers, i.e.,
x 6= y:

P ≡ (νñ)(x〈w〉.P1 | !x(v).P2 | y〈l〉.P3 | !y(u).P4 | Rz)

for some P1, . . . , P4, Rz , with x, y, w, and l occurring in ñ. We have:

P −→x (νñ)(P1 | P2{w/v} | !x(v).P2 | y〈l〉.P3 | !y(u).P4 | Rz)
−→y (νñ)(P1 | P2{w/v} | !x(v).P2 | P3 | P4{l/u} | !y(u).P4 | Rz)

P −→y (νñ)(x〈w〉.P1 | !x(v).P2 | P3 | P4{l/u} | !y(u).P4 | Rz)
−→x (νñ)(P1 | P2{w/v} | !x(v).P2 | P3 | P4{l/u} | !y(u).P4 | Rz)

Thus, one reduction does not preclude the other. In the second sub case, we have two invocations
to the same server, i.e., x = y:

P ≡ (νñ)(x〈w〉.P1 | x〈l〉.P2 | !x(v).P3 | Rz)

43

We assume that x, w, and l occur in ñ. We have:

P −→x (νñ)(P1 | P3{w/v} | x〈l〉.P2 | !x(v).P3 | Rz)
−→x (νñ)(P1 | P3{w/v} | P2 | P3{l/v} | !x(v).P3 | Rz)

P −→x (νñ)(x〈w〉.P1 | P2 | P3{l/v} | !x(v).P3 | Rz)
−→x (νñ)(P1 | P3{w/v} | P2 | P3{l/v} | !x(v).P3 | Rz)

Here again, one reduction does not preclude the other. Notice that the order in which the synchro-
nizations occur is irrelevant, for the shared server is a persistent (replicated) process.

Case 6. The reduction on x is a server invocation; the reduction on y is a communication.
We would have

P ≡ (νñ)(x〈w〉.P1 | !x(v).P2 | y〈l〉.(P3 | P4) | y(u).P5 | Rz)

where x, y, w, and l occur in ñ. In this case, the reasoning is as in Case 3

Case 7. The reduction on x is a server invocation; the reduction on y is a forward.
We would have

P ≡ (νñ)(x〈w〉.P1 | !x(v).P2 | [y↔ l] | Rz)

where x, y, and w occur in ñ. The reasoning is similar as in Case 2 above.

Case 8. The reduction on x is a server invocation; the reduction on y is a choice.
We would have

P ≡ (νñ)(x〈w〉.P1 | !x(v).P2 | y.inl;P3 | y.case(P4, P5) | Rz)

where x, y, and w occur in ñ and the reasoning is similar as in Case 1 above.

Case 9. The reduction on x is a forwarding; the reduction on y is a communication.
This case is symmetric to Case 2 above.

Case 10. The reduction on x is a forwarding; the reduction on y is a server invocation.
This case is symmetric to Case 7 above.

Case 11. Both reductions, on x and y, are forwardings.
We would have

P ≡ (νñ)([x↔w] | [y↔ l] | Rz)

where x and y occur in ñ, and the thesis follows easily.

Case 12. The reduction on x is a forwarding; the reduction on y is a choice.
We would have two possibilities:

P ≡(νñ)([x↔w] | y.inl;P1 | y.case(P2, P3) | Rz)
P ≡(νñ)([x↔w] | y.inr;P1 | y.case(P2, P3) | Rz)

for some P1, . . . , P3, Rz , with x and y occur in ñ. In both cases the thesis follows easily.

44

Case 13. Both reductions, on x and y, are choices.
There are four sub-cases, depending on combinations of right and left selection along x and y. We
consider one particular subcase—the other three are analogous:

P ≡ (νñ)(x.inr;P1 | x.case(P2, P3) | y.inl;P4 | y.case(P5, P6) | Rz)

for some P1, . . . , P6, Rz , with x, y, and w occur in ñ. The two enabled reductions correspond to
independent, non interfering sessions:

P −→x (νñ)(P1 | P3 | y.inl;P4 | y.case(P5, P6) | Rz)
−→y (νñ)(P1 | P3 | P4 | P5 | Rz)

P −→y (νñ)(x.inr;P1 | x.case(P2, P3) | P4 | P5 | Rz)
−→x (νñ)(P1 | P3 | P4 | P5 | Rz)

Thus, one reduction does not preclude the other and the thesis follows.

Case 14. The reduction on x is a choice; the reduction on y is a forwarding.
This case is symmetric to Case 12 above.

Case 15. The reduction on x is a choice; the reduction on y is a server invocation.
This case is symmetric to Case 8 above.

Case 16. The reduction on x is a choice; the reduction on y is a communication.
This case is symmetric to Case 1 above.

Appendix A.3. Proof of Proposition 5.12
We repeat the statement in Page 19:

Proposition Appendix A.3 (5.12). Let P,Q be processes such that P ∈ L[T] and Q ∈ L[−:1]. Then,
P | Q ∈ L[T].

Proof. By induction on the structure of T . First, it is worth observing that P ∈ L[T] and Q ∈ L[−:1] imply
·; · ` P :: T and ·; · ` Q :: −:1, respectively. Hence, we can derive the typing ·; · ` P | Q :: T (cf. the
derived rule (comp)). In fact, the type of Q indicates it cannot offer any visible action to its environment,
and so it is “independent” from it.

If T= − :1 then P | Q represents the parallel composition of two terminating processes that cannot
interact with each other. Hence, for all R such that P | Q =⇒ R and R 6→ we have that R ≡! 0, and so
P | Q ∈ L[−:1]. The cases in which T 6= − :1 rely on the fact that if P α

=⇒ P ′ then there exists a process
R such that P | Q α

=⇒ R. The proof is by induction on k = mlen(Q). If k = 0 then Q 6−→ and for every
weak transition P α

=⇒ P ′, we have P | Q α
=⇒ P ′ | Q = R. In the inductive case, we assume k > 0,

and so reductions (or the action α) from P may go interleaved with reductions from Q. Given P α
=⇒ P ′

then by induction hypothesis there is an R′ such that P | Q α
=⇒ P ′ | Q′ = R′, with Q reducing to Q′

in k − 1 steps. Then, if Q′ −→ Q′′ we would have P | Q α
=⇒ P ′ | Q′ −→ P ′ | Q′′ which is equivalent

to write P | Q α
=⇒ R, with R = P ′ | Q′′, and we are done. Finally, we observe that, given P α

=⇒ P ′,
process Q (and its derivatives) pose no difficulties when decomposing P ′ into smaller processes (in the case
T = z:A⊗B, for instance). Hence, we can conclude that if P ∈ L[T] then P | Q ∈ L[T], as desired.

45

Appendix A.4. Proof of Lemma 5.2

We repeat the statement in Page 19 below. In the proof, we use G,G′, . . . and D,D′, . . . to range over
processes in CΓ and C∆, respectively. Also, by a slight abuse of notation we write L[x:A] and !z(y).L[y:A]
to denote a process included in L[x:A] and L[!z:A], respectively.

Lemma Appendix A.1 (5.2). If Γ; ∆ ` P :: T then P ∈ L[Γ; ∆ ` T].

Proof. By induction on the derivation of Γ; ∆ ` P :: T , with a case analysis on the last typing rule used.
Thus, we have 18 cases to check. In all of them, we use Lemma 5.1 and show that every M =

(νũ, x̃)(P | G | D) with G ∈ CΓ and D ∈ C∆, is in L[T]. In case (Tid), the proof uses Prop 5.4 (clo-
sure wrt substitution) and Prop 5.11 (backward closure). In cases (T⊗L), (T(L), (Tcopy), (T⊕L), (TNL1),
and (TNL2), the proof proceeds in two steps: first, relying on Prop 5.10 (forward closure) we show that ev-
ery M ′′ such that M =⇒ M ′′ is in L[T]; then, we use this result in combination with Prop 5.11 (backward
closure) to conclude thatM ∈ L[T]. In cases (T1R), (T⊗R), (T(R), (T!R), (T⊕R1), and (T⊕R2), the proof
consists in showing that M conforms to some specific case of Def 5.4. Case (T1L) uses Prop 5.12. Cases
(T⊗L), (T(L), (T⊕L), and (TNL1), use the liveness guarantee given by Prop 5.6. Cases (Tcopy), (T!L)and
(Tcut!) use Prop 5.5 (closure under ≡). Cases (Tcut), (T(R), and (T!R) use Prop 5.7 (closure under ≡!).

0. Case (Tid): Γ;x:A ` [x↔z] :: z:A.

Pick any G ∈ CΓ:
(a) G⇓, G 6−→ [By Prop 5.3]
(b) D ∈ L[x:A]

(c) M = (νũ, x)([x↔z] | G | D) ∈ L[z:A]

The proof of (c) is immediate:
(d) M −→ (νũ)(G{z/x} | D{z/x})

≡! D{z/x} = M ′ [Since x 6∈ fn(G)]
(e) M ′ ∈ L[z:A] [By (b) and Prop 5.4]
(f) M ∈ L[z:A] [By (d), (e), and Prop 5.11]

[x↔z] ∈ L[Γ;x:A ` z:A] [By (c) and Lemma 5.1]

1. Case (T1R): Γ; · ` 0 :: z:1.

Pick any G ∈ CΓ:
(a) G⇓, G 6−→ [By Prop 5.3]
(b) M = (νũ)(0 | G) ∈ L[z:1]

The proof of (b) is immediate:
(c) M 6−→ ∧M ≡! 0 [Using (a)]
(d) M ∈ L[z:1] [By (c) and Def 5.4]

0 ∈ L[Γ; · ` z:1] [By (b) and Lemma 5.1]

46

2. Case (T1L): Γ; ∆, z:1 ` P :: T .

(a) Γ; ∆ ` P :: T [Premise of rule (T1L)]
(b) P ∈ L[Γ; ∆ ` T] [By i.h. on (a)]
Pick any G ∈ CΓ, D ∈ C∆:
(c) M1 = (νũ, x̃)(P | G | D) ∈ L[T] [By Lemma 5.1 on (b)]
Pick any R ∈ L[z:1] and fix M2 = M1 | R
(d) M2 ∈ L[T] [By (c) and Prop 5.12]
(e) (νũ, x̃, z)(P | G | D | R) ∈ L[T] [Expanding (d)]
P ∈ L[Γ; ∆, z:1 ` T] [By (e) and Lemma 5.1]

3. Case (T⊗L): Γ; ∆, z:A⊗B ` z(y).P :: T

(a) Γ; ∆, y:A, z:B ` P :: T [Premise of rule (T⊗L)]
(b) P ∈ L[Γ; ∆, y:A, z:B ` T] [By i.h on (a)]
Pick any G ∈ CΓ, D ∈ C∆:
(c) G⇓, G 6−→, D⇓ [By Prop 5.3]
(d) (νũ, x̃, y, z)(P | G | D | L[y:A] | L[z:B]) ∈ L[T] [By Lemma 5.1 on (b)]
Pick R ∈ L[z:A⊗B]:
(e) ·; · ` R :: z:A⊗B, R⇓ [By Def 5.4]

(f) R
z(y)
=⇒ R′ [By (e) and Prop 5.6]

(g) R′ ≡! R
′
1 | R′2 ∧R′1 ∈ L[y:A] ∧R′2 ∈ L[z:B] [By Def 5.4]

Fix M = (νũ, x̃, z)(z(y).P | G | D | R)

(h) ∀M ′′.M =⇒M ′′ ⇒M ′′ ∈ L[T]

We prove (h) by induction on k = mlen(D,R): [Possible by (c) and (e)]
Base case k = 0. Hence, D 6−→, and R 6−→:
M −→ (νũ, x̃, z, y)(P | G | D | R′1 | R′2) = M ′′ [Because of (f)]
M ′′ ∈ L[T] [Using (d) and (g)]

Inductive case k > 0:

Fix the set W = {M ′ | M −→k−1 M ′}
∀M ′ ∈W.M ′ ∈ L[T] [By i.h.]
Fix the set W ′ = {M ′′ | M ′ −→M ′′ ∧M ′ ∈W}
∀M ′′ ∈W ′.M ′′ ∈ L[T] [By Prop 5.10]

(i) M ∈ L[T] [By (h) and Prop 5.11]
z(y).P ∈ L[Γ; ∆, z:A⊗B ` T] [By (i) and Lemma 5.1]

47

4. Case (T⊗R): Γ; ∆,∆′ ` z(y).(P | Q) :: z:A⊗B

(a) Γ; ∆ ` P :: y:A [Premise of rule (T⊗R)]
(b) Γ; ∆′ ` Q :: z:B [Premise of rule (T⊗R)]
(c) P ∈ L[Γ; ∆ ` y:A] [By i.h on (a)]
(d) Q ∈ L[Γ; ∆′ ` z:B] [By i.h on (b)]
Pick any G ∈ CΓ, D ∈ C∆, D′ ∈ C∆′ :
(e) G⇓, G 6−→, D⇓, D′⇓ [By Prop 5.3]
(f) (νũ, x̃1)(P | G | D) ∈ L[y:A] [By Lemma 5.1 on (c)]
(g) (νũ, x̃2)(Q | G | D′) ∈ L[z:B] [By Lemma 5.1 on (d)]
Fix x̃ = x̃1 ∪ x̃2:
(h) M = (νũ, x̃)(z(y).(P | Q) | G | D | D′)∈ L[z:A⊗B]

We prove (h) by induction on k = mlen(D,D′): [Possible by (e)]
Base case k = 0. Hence, D 6−→, and D′ 6−→:

(i) M
z(y)−−→ (νũ, x̃)(P | Q | G | D | D′) = M ′

M ′ ≡! (νũ, x̃1)(P | G | D)︸ ︷︷ ︸
M ′

1

| (νũ, x̃2)(Q | G | D′)︸ ︷︷ ︸
M ′

2

(j) M ′1 ∈ L[y:A] [By (f)]
(k) M ′2 ∈ L[z:B] [By (g)]
M ∈ L[z:A⊗B] [By Def 5.4, using (i), (j), and (k)]

Inductive case k > 0:

Fix the set W = {M ′ | M −→k−1 M ′}
∀M ′ ∈W.M ′ ∈ L[z:A⊗B] [By i.h.]
Fix the set W ′ = {M ′′ | M ′ −→M ′′ ∧M ′ ∈W}
∀M ′′ ∈W ′.M ′′ ∈ L[z:A⊗B] [By Prop 5.10]

z(y).(P | Q) ∈ L[Γ; ∆,∆′ ` z:A⊗B] [By (h) and Lemma 5.1]

5. Case (T(L): Γ; ∆,∆′, z:A(B ` z(y).(P | Q) :: T

(a) Γ; ∆ ` P :: y:A [Premise of rule (T(L)]
(b) Γ; ∆′, z:B ` Q :: T [Premise of rule (T(L)]
(c) P ∈ L[Γ; ∆ ` y:A] [By i.h on (a)]
(d) Q ∈ L[Γ; ∆′, z:B ` T] [By i.h on (b)]
Pick any G ∈ CΓ, D ∈ C∆, D′ ∈ C∆′ :
(e) G⇓, G 6−→, D⇓, D′⇓ [By Prop 5.3]
(f) (νũ, x̃1)(P | G | D) ∈ L[y:A] [By Lemma 5.1 on (c)]
(g) (νũ, x̃2, z)(Q | G | D′ | L[z:B]) ∈ L[T] [By Lemma 5.1 on (d)]

48

Fix x̃ = x̃1 ∪ x̃2 and pick R ∈ L[z:A(B]:
(h) ·; · ` R :: z:A(B, R⇓ [By Def 5.4]

(i) R
z(y)
=⇒ R′ [By (h) and Prop 5.6]

(j) ∀Q ∈ L[y:A].(νy)(R′ | Q) ∈ L[z:B] [By Def 5.4]
Fix M = (νũ, x̃, z)(z(y).(P | Q) | G | D | D′ | R)

(k) ∀M ′′.M =⇒M ′′ ⇒M ′′ ∈ L[T]

We prove (k) by induction on k = mlen(D,D′, R): [Possible by (e) and (h)]
Base case k = 0. Hence, D 6−→, D′ 6−→, R 6−→:
M −→ (νũ, x̃, z, y)(P | Q | G | D | D′ | R′) = M ′′ [Because of (i)]
Fix M∗ = (νũ, x̃1)(P | G | D) :

(l) M∗ ∈ L[y:A] [Using (f)]
M ′′ ≡! (νũ, x̃2, z)(Q | G | D′ | (νy)(R′ |M∗)) = M1

(m) (νy)(R′ |M∗) ∈ L[z: B] [Using (j) and (l)]
(n) M1 ∈ L[T] [Using (g) and (m)]
M ′′ ∈ L[T] [By Prop 5.7 and (n)]

Inductive case k > 0:

Fix the set W = {M ′ | M −→k−1 M ′}
∀M ′ ∈W.M ′ ∈ L[T] [By i.h.]
Fix the set W ′ = {M ′′ | M ′ −→M ′′ ∧M ′ ∈W}
∀M ′′ ∈W ′.M ′′ ∈ L[T] [By Prop 5.10]

(o) M ∈ L[T] [By (k) and Prop 5.11]
z(y).(P | Q) ∈ L[Γ; ∆,∆′, z:A(B ` T] [By (o) and Lemma 5.1]

6. Case (T(R): Γ; ∆ ` z(y).P :: z:A(B

(a) Γ; ∆, y:A ` P :: z:B [Premise of rule (T(R)]
(b) P ∈ L[Γ; ∆, y:A ` z:B] [By i.h on (a)]
Pick any G ∈ CΓ, D ∈ C∆:
(c) G⇓, G 6−→, D⇓ [By Prop 5.3]
(d) (νũ, x̃, y)(P | G | D | L[y:A]) ∈ L[z:B] [By Lemma 5.1 on (b)]
(e) M = (νũ, x̃)(z(y).P | G | D)∈ L[z:A(B]

We prove (e) by induction on k = mlen(D): [Possible by (c)]
Base case k = 0. Hence, D 6−→:

(f) M
z(y)−−→ (νũ, x̃)(P | G | D) = M1

Pick any R ∈ L[y:A]:
(g) (νũ, x̃, y)(P | G | D | R) ∈ L[z:B] [Using (d)]
M ∈ L[z:A(B] [By Def 5.4, using (f),(g)]

49

Inductive case k > 0:

Fix the set W = {M ′ | M −→k−1 M ′}
∀M ′ ∈W.M ′ ∈ L[z:A(B] [By i.h.]
Fix the set W ′ = {M ′′ | M ′ −→M ′′ ∧M ′ ∈W}
∀M ′′ ∈W ′.M ′′ ∈ L[z:A(B] [Prop 5.10]

z(y).P ∈ L[Γ; ∆ ` z:A(B] [By Lemma 5.1 on (e)]

7. Case (Tcut): Γ; ∆,∆′ ` (νz)(P | Q) :: T

(a) Γ; ∆ ` P :: z:A [Premise of rule (Tcut)]
(b) Γ; ∆′, z:A ` Q :: T [Premise of rule (Tcut)]
(c) P ∈ L[Γ; ∆ ` z:A] [By i.h. on (a)]
(d) Q ∈ L[Γ; ∆′, z:A ` T] [By i.h. on (b)]
Pick any G ∈ CΓ, D ∈ C∆, D′ ∈ C∆′ :
(e) (νũ, x̃1)(P | G | D) ∈ L[z:A] [By Lemma 5.1 on (c)]
(f) (νũ, x̃2, z)(Q | G | D′ | L[z:A]) ∈ L[T] [By Lemma 5.1 on (d)]
Fix M = (νũ, x̃)((νz)(P | Q) | G | D | D′)
M ≡! (νz)((νũ, x̃2)(Q | G | D′) | (νũ, x̃1)(P | G | D)︸ ︷︷ ︸

M1

) = M ′

(g) M1 ∈ L[z:A] [Using (e)]
(h) M ′ ∈ L[T] [Combining (g) and (f)]
(i) M ∈ L[T] [Using (h) and Prop 5.7]
(j) (νũ, x̃)((νz)(P | Q) | G | D | D′) ∈ L[T] [Expanding (i)]
(νz)(P | Q) ∈ L[Γ; ∆,∆′ ` T] [By Lemma 5.1 on (j)]

8. Case (Tcut!): Γ; ∆ ` (νz)(!z(y).P | Q) :: T

(a) Γ; · ` P :: y:A [Premise of rule (Tcut!)]

(b) Γ, z:A; ∆ ` Q :: T [Premise of rule (Tcut!)]
(c) P ∈ L[Γ; · ` y:A] [By i.h. on (a)]
(d) Q ∈ L[Γ, z:A; ∆ ` T] [By i.h. on (b)]
Pick any G ∈ CΓ, D ∈ C∆:
(e) (νũ)(P | G) ∈ L[y:A] [By Lemma 5.1 on (c)]
(f) (νũ, x̃, z)(Q | G | !z(y).L[y:A] | D) ∈ L[T] [By Lemma 5.1 on (d)]
Fix M = (νũ, z, x̃)(!z(y).P | Q | G | D)

(g) M ∈ L[T] [Combining (e) and (f)]
M ≡ (νũ, x̃)((νz)(!z(y).P | Q) | G | D) = M ′

(h) M ′ ∈ L[T] [From (g), using Prop 5.5]
(νz)(!z(y).P | Q) ∈ L[Γ; ∆ ` T] [By Lemma 5.1 on (h)]

50

9. Case (Tcopy): Γ, z:A; ∆ ` z(y).P :: T

(a) Γ, z:A; ∆, y:A ` P :: T [Premise of rule (Tcopy)]
(b) P ∈ L[Γ, z:A; ∆, y:A ` P :: T] [By i.h on (a)]
Pick any G ∈ CΓ, D ∈ C∆:
(c) G⇓, G 6−→, D⇓ [By Prop 5.3]
(d) (νũ, z, x̃, y)(P | G | !z(y).L[y:A] | D | L[y:A]) ∈ L[T] [By Lemma 5.1 on (b)]
Pick R ∈ L[y:A]:
Fix M = (νũ, z, x̃)(z(y).P | G | !z(y).R | D)

(e) ∀M ′′.M =⇒M ′′ ⇒M ′′ ∈ L[T]

We prove (e) by induction on k = mlen(D): [Possible by (c)]
Base case k = 0. Hence, D 6−→:
M −→≡ (νũ, z, x̃, y)(P | G | !z(y).R | D | R) = M ′′

M ′′ ∈ L[T] [Using (d) and Prop 5.5]
Inductive case k > 0:

Fix the set W = {M ′ | M −→k−1 M ′}
∀M ′ ∈W.M ′ ∈ L[T] [By i.h.]
Fix the set W ′ = {M ′′ | M ′ −→M ′′ ∧M ′ ∈W}
∀M ′′ ∈W ′.M ′′ ∈ L[T] [By Prop 5.10]

(f) M ∈ L[T] [By (e) and Prop 5.11]
z(y).P ∈ L[Γ, z:A; ∆ ` T] [By (f) and Lemma 5.1]

10. Case (T!L): Γ; ∆, y:!A ` P :: T

(a) Γ, z:A; ∆ ` P{z/y} :: T [Premise of rule (T!L)]
(b) P{z/y} ∈ L[Γ, z:A; ∆ ` T] [By i.h on (a)]
Pick any G ∈ CΓ, D ∈ C∆:
(c) (νũ, z, x̃)(P{z/y} | G | !z(w).L[w:A] | D) ∈ L[T] [By Lemma 5.1 on (b)]
(d) (νũ, y, x̃)(P | G | !y(w).L[w:A]︸ ︷︷ ︸

R

| D) ∈ L[T] [By ≡ (α-conv) on (c)]

(e) R ∈ L[y:!A] [By Def 5.4]
P ∈ L[Γ; ∆, y:!A ` T] [By (d), (e), Prop 5.5, and Lemma 5.1]

11. Case (T!R): Γ; · `!z(y).P :: z:!A

(a) Γ; · ` P :: y:A [Premise of rule (T!R)]
(b) P ∈ L[Γ; · ` y:A] [By i.h on (a)]

51

Pick any G ∈ CΓ:
(c) G⇓, G 6−→ [By Prop 5.3]
(d) (νũ)(P | G) ∈ L[y:A] [By Lemma 5.1 on (b)]
Fix M = (νũ)(!z(y).P | G)

M ≡! !z(y).(νũ)(P | G) = M ′ [By Def 5.3, Axiom (2)]
(e) M ′ ∈ L[z:!A] [By Def 5.4, using (d)]
(f) M ∈ L[z:!A] [By (e) and Prop 5.7]
!z(y).P ∈ L[Γ; · ` z:!A] [By (f) and Lemma 5.1]

12. Case (T⊕L): Γ; ∆, z:A⊕B ` z.case(P,Q) :: T

(a) Γ; ∆, z:A ` P :: T [Premise of rule (T⊕L)]
(b) Γ; ∆, z:B ` Q :: T [Premise of rule (T⊕L)]
(c) P ∈ L[Γ; ∆, z:A ` T] [By i.h on (a)]
(d) Q ∈ L[Γ; ∆, z:B ` T] [By i.h on (b)]
Pick any G ∈ CΓ, D ∈ C∆:
(e) G⇓, G 6−→, D⇓ [By Prop 5.3]
(f) (νũ, x̃, z)(P | G | D | L[z:A]) ∈ L[T] [By Lemma 5.1 on (c)]
(g) (νũ, x̃, z)(Q | G | D | L[z:B]) ∈ L[T] [By Lemma 5.1 on (d)]
Pick R ∈ L[z:A⊕B]:
(h) ·; · ` R :: z:A⊕B, R⇓ [By Def 5.4]

(i) R z.inl
=⇒ R′ ∨R z.inr

=⇒ R′ [By (h) and Prop 5.6]

(j) R z.inl
=⇒ R′ ⇒ R′ ∈ L[z:A] ∧ R z.inr

=⇒ R′ ⇒ R′ ∈ L[z:B] [By Def 5.4]
Fix M = (νũ, x̃, z)(z.case(P,Q) | G | D | R) :

(k) ∀M ′′.M =⇒M ′′ ⇒M ′′ ∈ L[T]

We prove (k) by induction on k = mlen(D,R): [Possible by (e) and (h)]
Base case k = 0. Hence, D 6−→, R 6−→:
M −→M ′′1 ∨M ′′ −→M ′′2 ,where :

M ′′1 = (νũ, x̃, z)(P | G | D | R′) [Because of (i)]
M ′′2 = (νũ, x̃, z)(Q | G | D | R′) [Because of (i)]
M ′′1 ∈ L[T] [Using (f)]
M ′′2 ∈ L[T] [Using (g)]

Inductive case k > 0:

Fix the set W = {M ′ | M −→k−1 M ′}
∀M ′ ∈W.M ′ ∈ L[T] [By i.h.]
Fix the set W ′ = {M ′′ | M ′ −→M ′′ ∧M ′ ∈W}
∀M ′′ ∈W ′.M ′′ ∈ L[T] [By Prop 5.10]

52

(l) M ∈ L[T] [By (k) and Prop 5.11]
z.case(P,Q) ∈ L[Γ; ∆, z:A⊕B ` T] [By (l) and Lemma 5.1]

13. Case (TNL1): Γ; ∆, z:ANB ` z.inl;P :: T

(a) Γ; ∆, z:A ` P :: T [Premise of rule (TNL1)]
(b) P ∈ L[Γ; ∆, z:A ` T] [By i.h on (a)]
Pick any G ∈ CΓ, D ∈ C∆:
(c) G⇓, G 6−→, D⇓ [By Prop 5.3]
(d) (νũ, x̃, z)(P | G | D | L[z:A]) ∈ L[T] [By Lemma 5.1 on (b)]
Pick R ∈ L[z:ANB]:
(e) ·; · ` R :: z:ANB, R⇓ [By Def 5.4]

(f) R z.inl
=⇒ R1 ∨R

z.inr
=⇒ R2 [By (e) and Prop 5.6]

(g) R z.inl
=⇒ R1 ⇒ R1 ∈ L[z:A] ∧ R z.inr

=⇒ R2 ⇒ R2 ∈ L[z:B] [By Def 5.4]
Fix M = (νũ, x̃, z)(z.inl;P | G | D | R) :

(h) ∀M ′′.M =⇒M ′′ ⇒M ′′ ∈ L[T]

We prove (h) by induction on k = mlen(D,R): [Possible by (c) and (e)]
Base case k = 0. Hence, D 6−→, R 6−→:
M −→ (νũ, x̃, z)(P | G | D | R1) = M ′′

M ′′ ∈ L[T] [Using (d) and (g)]
Inductive case k > 0:

Fix the set W = {M ′ | M −→k−1 M ′}
∀M ′ ∈W.M ′ ∈ L[T] [By i.h.]
Fix the set W ′ = {M ′′ | M ′ −→M ′′ ∧M ′ ∈W}
∀M ′′ ∈W ′.M ′′ ∈ L[T] [By Prop 5.10]

(j) M ∈ L[T] [By (h) and Prop 5.11]
z.inl;P ∈ L[Γ; ∆, z:ANB ` T] [By (j) and Lemma 5.1]

14. Case (TNL2): Analogous to case (TNL1).

15. Case (TNR): Γ; ∆ ` z.case(P,Q) :: z:ANB

(a) Γ; ∆ ` P :: z:A [Premise of rule (TNR)]
(b) Γ; ∆ ` Q :: z:B [Premise of rule (TNR)]
(c) P ∈ L[Γ; ∆ ` z:A] [By i.h on (a)]
(d) Q ∈ L[Γ; ∆ ` z:B] [By i.h on (b)]

53

Pick any G ∈ CΓ, D ∈ C∆:
(e) G⇓, G 6−→, D⇓ [By Prop 5.3]
(f) (νũ, x̃)(P | G | D) ∈ L[z:A] [By Lemma 5.1 on (c)]
(g) (νũ, x̃)(Q | G | D) ∈ L[z:B] [By Lemma 5.1 on (d)]
(h) M = (νũ, x̃)(z.case(P,Q) | G | D) ∈ L[z:ANB]

We prove (h) by induction on k = mlen(D): [Possible by (e)]
Base case k = 0. Hence, D 6−→:

(i) M z.inl−−→M1 ∧M
z.inr−−−→M2,where :

M1 = (νũ, x̃)(P | G | D)

M2 = (νũ, x̃)(Q | G | D)

(j) M1 ∈ L[z:A] [Using (f)]
(k) M2 ∈ L[z:B] [Using (g)]
M ∈ L[z:ANB] [By Def 5.4, using (i), (j), (k)]

Inductive case k > 0:

Fix the set W = {M ′ | M −→k−1 M ′}
∀M ′ ∈W.M ′ ∈ L[z:ANB] [By i.h.]
Fix the set W ′ = {M ′′ | M ′ −→M ′′ ∧M ′ ∈W}
∀M ′′ ∈W ′.M ′′ ∈ L[z:ANB] [By Prop 5.10]

z.case(P,Q) ∈ L[Γ; ∆ ` z:ANB] [By (h) and Lemma 5.1]

16. Case (T⊕R1): Γ; ∆ ` z.inl;P :: z:A⊕B

(a) Γ; ∆ ` z.inl;P :: z:A⊕B [Premise of rule (T⊕R1)]
(b) P ∈ L[Γ; ∆ ` z:A] [By i.h on (a)]
Pick any G ∈ CΓ, D ∈ C∆:
(c) G⇓, G 6−→, D⇓ [By Prop 5.3]
(d) (νũ, x̃)(P | G | D) ∈ L[z:A] [By Lemma 5.1 on (b)]
(e) M = (νũ, x̃)(z.inl;P | G | D)∈ L[z:A⊕B]

We prove (e) by induction on k = mlen(D): [Possible by (c)]
Base case k = 0. Hence, D 6−→:

(i) M z.inl−−−→ (νũ, x̃)(P | G | D) = M1

(j) M1 ∈ L[z:A] [Using (d)]
M ∈ L[z:A⊕B] [Using (i), (j), and Def 5.4]

54

Inductive case k > 0:

Fix the set W = {M ′ | M −→k−1 M ′}
∀M ′ ∈W.M ′ ∈ L[z:A⊕B] [By i.h.]
Fix the set W ′ = {M ′′ | M ′ −→M ′′ ∧M ′ ∈W}
∀M ′′ ∈W ′.M ′′ ∈ L[z:A⊕B] [By Prop 5.10]

z.inl;P ∈ L[Γ; ∆ ` z:A⊕B] [By (e) and Lemma 5.1]

17. Case (T⊕R2): Analogous to case (T⊕R1).

Appendix A.5. Proof of Lemma 5.4

We repeat the statement in Page 22 and give details of the proof.

Lemma Appendix A.2. Let P be a process. If Γ; ∆ ` P :: T then P ∈ L♦[Γ; ∆ ` T].

Proof. By induction on the derivation of Γ; ∆ ` P :: T , with a case analysis on the last typing rule used.
We have 18 cases to check; in all cases, we use Lemma 5.3 to show that every M = (νũ, x̃)(P | G | D)
with G ∈ C♦Γ and D ∈ C♦∆, is in L♦[T].

The proof follows closely the lines of the proof of Lemma 5.2 (Page 46); it exploits the fact that well-
typed processes are always terminating (Theorem 5.1). In case (Tid), we use Proposition 5.15 (closure wrt
substitution) and Proposition 5.19 (backward closure). In cases (T⊗L), (T(L), (Tcopy), (T⊕L), (TNL1),
and (TNL2), we proceed in two steps: first, using Proposition 5.18 (forward closure) we show that every
M ′′ such that M =⇒ M ′′ is in L♦[T]; then, we use this result in combination with Proposition 5.19
(backward closure) to conclude that M ∈ L♦[T]. In cases (T1R), (T⊗R), (T(R), (T!R), (T⊕R1), and
(T⊕R2), we show that M conforms to a specific case of Definition 5.7. Case (T1L) exploits properties of
confluent processes under independent parallel composition. Cases (T⊗L), (T(L), (T⊕L), and (TNL1) use
the liveness guarantee given by Proposition 5.6. Cases (Tcopy), (T!L), and (Tcut!) use Proposition 5.16
(closure under ≡). Cases (Tcut), (T(R), and (T!R) use Proposition 5.17 (closure under ≡!).

Below, we illustrate a few cases; the rest are essentially as in the proof of Lemma 5.2 (Page 46).

Case (Tid): Γ;x:A ` [x↔z] :: z:A.

Pick any G ∈ C♦Γ :
(a) G♦, G 6−→ [By Prop 5.13]
(b) D ∈ L♦[x:A]

(c) M = (νũ, x)([x↔z] | G | D) ∈ L♦[z:A]

The proof of (c) is immediate:
(d) M −→ (νũ)(G{z/x} | D{z/x})

≡! D{z/x} = M ′ [Since ui 6∈ fn(D)]

(e) M ′ ∈ L♦[z:A] [By (b) and Prop 5.15]

(f) M ∈ L♦[z:A] [By (d), (e), and Prop 5.19]

[x↔z] ∈ L♦[Γ;x:A ` z:A] [By (c) and Lemma 5.3]

55

Case (T1R): Γ; · ` 0 :: z:1.

Pick any G ∈ C♦Γ :
(a) G♦, G 6−→ [By Prop 5.13]

(b) M = (νũ)(0 | G) ∈ L♦[z:1]

The proof of (b) is immediate:
(c) M♦ ∧M 6−→ ∧M ≡! 0 [Using (a)]

(d) M ∈ L♦[z:1] [By (c) and Def 5.7]

0 ∈ L♦[Γ; · ` z:1] [By (b) and Lemma 5.3]

Case (T1L): Γ; ∆, z:1 ` P :: T .

(a) Γ; ∆ ` P :: T [Premise of rule (T1L)]

(b) P ∈ L♦[Γ; ∆ ` T] [By i.h. on (a)]

Pick any G ∈ C♦Γ , D ∈ C♦∆:

(c) M1 = (νũ, x̃)(P | G | D) ∈ L♦[T] [By Lemma 5.3 on (b)]

Pick any R ∈ L♦[z:1] and fix M2 = M1 | R
(d) R♦ [By Def 5.8]

(e) M2 ∈ L♦[T] [By (c), (d), and independent parallel comp.]

(f) (νũ, x̃, z)(P | G | D | R) ∈ L♦[T] [Expanding (d)]

P ∈ L♦[Γ; ∆, z:1 ` T] [By (f) and Lemma 5.3]

Appendix B. Proofs from Section 6 (Typed Context Bisimilarity)

Appendix B.1. Proof of Proposition 6.3

We repeat the statement in Page 27, and present its proof.

Proposition Appendix B.1 (6.3). Γ; ∆ ` P ≈ Q ::T implies ` K[P] ≈ K[Q] ::T , whereK is any parallel
representative in KΓ;∆`T , as in Definition 6.5.

Proof. Let #(Γ), #(∆) denote the cardinality of Γ,∆, respectively. The proof is by induction on n =
#(Γ) + #(∆). The base case is when n = 0: then both typing environments are empty and so K = •.
Hence, K[P] = P and K[Q] = Q and the thesis trivially holds. In the inductive case, n > 0, and there are
two sub-cases. In the first one, we have Γ, ui:Gi; ∆ ` P ≈ Q ::T . By definition of ≈, it implies

Γ; ∆ ` (νui)(!ui(yi).S | P) ≈ (νui)(!ui(yi).S | Q) ::T

for every S such that ` S :: yi:Gi. Now, using the induction hypothesis, the latter allows us to infer
` K1[(νui)(!ui(yi).S | P)] ≈ K1[(νui)(!ui(yi).S | Q)] ::T , for everyK1 ∈ KΓ,∆`T . We observe that, for

56

anyR,K1[(νui)(!ui(yi).S | R)] is the same as havingK0[R], with a contextK0 = (νui)(!ui(yi).S | K1[·]).
By Definition 6.5, we infer that K0 ∈ KΓ,ui:Gi;∆`T . Therefore, Γ, ui:Gi; ∆ ` P ≈ Q ::T implies

` K[P] ≈ K[Q] ::T

for any K ∈ KΓ,ui:Gi;∆, as desired. In the second sub-case, we have Γ; ∆, xj :Aj ` P ≈ Q ::T , and the
analysis follows the same lines as before.

Appendix B.2. Additional Cases for Proof of Lemma 6.1

We repeat the statement in Page 28, and detail some additional cases, thus complementing the proof
given in that page.

Lemma Appendix B.1 (Contextuality of ≈). Typed context bisimilarity is a contextual relation, in the
sense of Definition 6.3.

Proof. The proof proceeds by coinduction, exhibiting a typed context bisimulation for each of the conditions
associated to Definition 6.3. We shall exploit the proof technique given by Proposition 6.3, which allows us
to consider≈ under empty left-hand side contexts, for pairs of processes enclosed within appropriate parallel
representatives. As a result, it suffices to consider only some of the conditions in Table 5; see Remark 6.1.
In Page 28 we have detailed the case of closure under output prefix; below we show the cases for closure
under parallel composition and under replicated input (Items (8) and (15), respectively).

Item (8): We have to show that Γ; ∆1 ` P ≈ Q :: y:A implies

Γ; ∆1,∆2 ` (νy)(P | S) ≈ (νy)(Q | S) :: T

for any S, T,∆2 such that Γ; ∆2, y:A ` S :: T . Using Proposition 6.3, it suffices to show ` K1[P] ≈
K1[Q] :: y:A implies

` K2[(νy)(K1[P] | S)] ≈ K2[(νy)(K1[Q] | S)] :: T

where K1 ∈ KΓ;∆1`y:A and K2 ∈ K ·;∆2`x:T .

Letting M = K2[(νy)(K1[P] | S)], N = K2[(νy)(K1[Q] | S)] we show that

R8 = {(M,N) : ` K1[P] ≈ K1[Q] :: y:A, K1 ∈ KΓ;∆1`y:A, K2 ∈ K ·;∆2`x:T }
∪ W`T

is a typed context bisimulation. Suppose that M moves first: M α−→ M ′; we need to find a matching
action N α

=⇒ N ′. Using the typing, we observe that there are two possibilities for α:

1. α = τ and `M ′ :: T , using subject reduction (Theorem 3.1)

2. α 6= τ , and both α and the type of M ′ depend on the actual shape of type T

We consider case (1) first, and so we assume that M τ−−→ M ′. We examine the different possibilities
for the origin of the reduction:

57

1. The reduction originates from K2. More precisely, by Definition 6.5 the reduction originates in
the part of K implementing names in ∆1, as the part of K2 implementing names in Γ cannot
evolve on its own (cf. Definition 6.5). Therefore, for some K4, we have both K2

τ−−→ K4 and
M ′ = K4[(νy)(K1[P] | S)]. By subject reduction (Theorem 3.1), the type of K4 is the same
than that of K, which in turn implies ` M ′ :: T . Since K2 occurs identically in M and N , this
reduction can be matched by N , possibly preceded/followed by zero or more reductions: and so
we have that N =⇒ K5[(νy)(K3[Q′] | S′)] = N ′, with K1 =⇒ K3 K2 =⇒ K5, Q =⇒ Q′,
and S =⇒ S′. Theorem 5.1 ensures that these weak transitions are finite. Moreover, subject
reduction (Theorem 3.1) ensures ` N ′ :: T . Therefore, the pair (M ′, N ′) is in R8, and we are
done.

2. The reduction originates from K1. The argument proceeds analogously as in the previous case.

3. The reduction originates fromP . Then, for someP ′, we haveP τ−−→ P ′ andM ′ = K2[(νy)(K1[P ′] | S)].
By subject reduction (Theorem 3.1), the type remains unchanged, which in turn implies `M ′ ::
T . Since ` K1[P] ≈ K1[Q] :: y:A, we infer that N can match this reduction: there is a Q′

such that Q =⇒ Q′. Again, reductions from Q may be preceded or followed by reductions from
K1, K2, and S. More precisely, there is a weak transition N =⇒ K5[(νy)(K3[Q′] | S′)] = N ′,
with K1 =⇒ K3 K2 =⇒ K5, Q =⇒ Q′, and S =⇒ S′. Theorem 5.1 ensures these weak
transitions are finite. Moreover, subject reduction (Theorem 3.1) ensures ` N ′ :: T . Therefore,
the pair (M ′, N ′) is inR8, and we are done.

4. The reduction originates from S. We proceed analogously as in the previous cases, relying on
the fact that S is the same in M and N .

5. The reduction originates from the interaction of P andK1. Therefore, for someK3, P
′, we have

M ′ = K2[(νy)(K3[P ′] | S)]. By subject reduction (Theorem 3.1), we can infer that `M ′ :: T .
SinceK1 occurs identically inM andN , and ` K1[P] ≈ K1[Q] :: y:A, we infer that this inter-
action can be matched byN . Hence, there is a weak transitionN =⇒ K5[(νy)(K3[Q′] | S′)] =
N ′ with K1 =⇒ K3, K2 =⇒ K5 Q =⇒ Q′, and S =⇒ S′. Theorem 5.1 ensures these weak
transitions are finite. Moreover, subject reduction (Theorem 3.1) ensures ` N ′ :: T . Therefore,
the pair (M ′, N ′) is inR8, and we are done.

6. The reduction originates from the interaction of S and K2. The argument proceeds analogously
as in the previous case.

7. The reduction originates from the interaction ofP and S. Therefore,M ′ = K2[(νy)(K1[P ′] | S′)].
Using the typings of each process, we infer that this interaction is only possible via a synchro-
nization on y, which offers (case of P) and requires (case of S) a behavior described by A.
We then proceed by structural induction on type A. All the cases are covered by preserva-
tion lemmas which formalize the interaction of complementary actions. We detail only the case

A = A1⊗A2; the other cases are similar. Using Lemma 3.2 we infer P
x(y)−−−→ P ′ and S

x(y)−−−→ S′.
Using Lemma 3.3 we infer that P ′ is well-typed, and we have ` K2[(νy)(K1[P ′] | S′)] :: T .
Since ` K1[P] ≈ K1[Q] :: y:A and S is the same in N , we know that these actions can be

matched by N , and that there exist Q′, S′ such that Q
x(y)
=⇒ Q′ and S

x(y)
=⇒ S′. Hence, there is

an N ′ = K5[(νy)(K3[Q′] | S′)] with K1 =⇒ K3 and K2 =⇒ K5. By virtue of Theorem 5.1
these are all finite weak transitions. Using again Lemma 3.3 and subject reduction (Theorem
3.1), one can show that N ′ is well-typed: ` K5[(νy)(K3[Q′] | S′)] :: T . Therefore, the pair
(M ′, N ′) is inR8 and we are done.

58

Now we consider case (2), and so we assume M α−−→ M ′, for some α 6= τ . The shape of α depends
on the structure of T ; the typing information ensures that T can only be provided by S. Therefore,
we proceed by induction on the structure of T . We consider only the case T = x:A1 ⊗ A2; the other
cases are similar or simpler. Then, by Lemma 3.2, α = x(z) and M ′ = K2[(νy)(K1[P] | S′)]. Since

S is the same in N , we know that this action can be matched by N : indeed we have S
x(z)
=⇒ S′ and

N ′ = K5[(νy)(K3[Q′] | S′)], with K1 =⇒ K3, K2 =⇒ K5, Q =⇒ Q′, and S =⇒ S′. Theorem
5.1 ensures these weak transitions are finite. Now we follow the definition of ≈ for output actions.
Then, for any R such that ·; z:A1 ` R :: −:1, we verify that both ` (νz)(M ′ | R) :: x:A2 and
` (νz)(N ′ | R) :: x:A2 hold. Hence, the pair ((νz)(M ′ | R), (νz)(N ′ | R)) is inW`x:A1⊗A2

and
we are done.

The case in which N α−→ N ′ moves first is completely symmetric.

Item (15): We have to show that Γ; ∆ ` P ≈ Q :: y:A implies

Γ; ∆ ` !x(y).P ≈ !x(y).Q :: x:!A

Using Proposition 6.3, it suffices to show that ` K[P] ≈ K[Q] :: y:A implies

` !x(y).K[P] ≈ !x(y).K[Q] :: x:!A

for any K ∈ KΓ;∆`y:A. Let M = !x(y).K[P] and N = !x(y).K[Q]. We show that

R13 = {(M,N) : ` K[P] ≈ K[Q] :: y:A, K ∈ KΓ;∆`T } ∪W`x:!A

is a typed context bisimulation. Suppose M moves first: M
α−−→ M ′. We must find a match-

ing action from N such that N α
=⇒ N ′. The only possibility is an input on x and so we have

M
x(z)−−−→ !x(y).K[P] | K[P]{z/y} = M ′. Process N can match this action immediately: N

x(z)−−−→
!x(y).K[Q] | K[Q]{z/y} = N ′. It is easy to show that typing is preserved by substitution, and so
` K[P] ≈ K[Q] :: y:A allows to infer ` K[P]{z/y} ≈ K[Q]{z/y} :: z:A.

Following the clause for replicated input of ≈, we consider the closure of M ′ and N ′ with a process
L such that z:A ` L :: −:1. Such closures correspond, respectively, to

(νz)(K[P]{z/y} | L) | !x(y).K[P] and (νz)(K[Q]{z/y} | L) | !x(y).K[Q]

We verify the type of these closures is indeed x:!A, as required by the replicated input clause. Since
` K[P]{z/y},K[Q]{z/y} :: z:A, these processes can be composed with L, thus leading to processes

of type −:1. It is immediate to see that ` !x(y).K[P], !x(y).K[Q] :: x:!A; hence, via an independent
parallel composition the two processes above are of type x:!A, and the pair

((νz)(K[P]{z/y} | L) | !x(y).K[P] , (νz)(K[Q]{z/y} | L) | !x(y).K[Q])

is inR13, as desired. The reasoning when N moves first is completely symmetric.

59

Appendix C. Proofs from Section 7.1 (Applications)

Appendix C.1. Additional Cases for the Proof of Theorem 7.1

We repeat the statement in Page 31, and detail some additional cases, thus complementing the proof
given in that page.

Theorem Appendix C.1 (7.1). Let P,Q be processes such that

(i) Γ; ∆ ` D P :: T ;

(ii) Γ; ∆ ` E Q :: T ;

(iii) P 'c Q.

Then, Γ; ∆ ` P ≈ Q ::T .

Proof. By coinduction, exhibiting appropriate typed context bisimulations for each commuting conversion.
In the bisimulation game, we exploit termination of well-typed processes (Theorem 5.1) to ensure that
actions can be matched with finite weak transitions, and Theorem 3.1 to ensure preservation of type under
reductions. We detail the cases of proof conversions A-2 and A-4 (cf. Figure D.6), and C-11 (cf. Figure D.7).

Proof conversion A-2 We then have that

Γ; ∆ ` cutD (x.⊗REx F) M = (νx)(D̂ | z(y).(Ê | F̂)) :: z:A⊗B
Γ; ∆ ` ⊗R (cutD (x.Ex))F N = z(y).((νx)(D̂ | Ê) | F̂) :: z:A⊗B

with
Γ; ∆1 ` D̂ :: x:C Γ; ∆2, x:C ` Ê :: y:A Γ; ∆3 ` F̂ :: z:B (C.1)

and ∆ = ∆1,∆2,∆3. We show that M 'c N implies Γ; ∆ `M ≈ N :: z:A⊗B.

By virtue of Prop. 6.3, we have to show that for every K ∈ KΓ;∆, we have ·; · ` K[M] ≈
K[N] :: z:A ⊗ B. In turn, this implies exhibiting a typed context bisimilarity R containing the
pair (K[M],K[N]). We thus defineR as :

R =W`z:A⊗B ∪ S ∪ S−1 where:
S = {(K1[M ′],K2[N]) : M =⇒M ′, K1,K2 ∈ KΓ;∆}

andW`z:A⊗B is as in Def 6.6. Notice that S is a type-respecting relation indexed by ` z:A ⊗ B. In
fact, using the typings in (C.1)—with Γ = ∆ = ∅—and exploiting subject reduction (Theorem 3.1),
it can be checked that for all (P,Q) ∈ S both ` P :: z:A⊗B and ` Q :: z:A⊗B can be derived.

We now show that R is a typed context bisimilarity. Pick any K ∈ KΓ;∆. Using Def. 6.5, we can
assume

K = (νũ, x̃)(• | KΓ | K∆) where:

• KΓ ≡
∏
i∈I !ui(yi).Ri, with ` Ri :: yi:Di, for every ui:Di ∈ Γ;

• K∆ ≡
∏
j∈J Sj , with ` Sj :: xj :Cj , for every xj :Cj ∈ ∆.

60

Clearly, (K[M],K[N]) ∈ S, and so it is inR. Now, suppose K[M] moves first: K[M]
α−−→M?

1 . We
have to find a matching action α from K[N], i.e., K[N]

α
=⇒ N?

1 . Since ` K[M] :: z:A⊗B, we have
two possible cases for α:

1. Case α = τ . We consider the possibilities for the origin of the reduction:
(a) KΓ

τ−−→ K ′Γ and K[M]
τ−−→ K ′[M]. However, this cannot be the case, as by construction

KΓ corresponds to the parallel composition of input-guarded replicated processes which
cannot evolve on their own.

(b) K∆
τ−−→ K ′∆ and K[M]

τ−−→ K ′[M]. Then, for some l ∈ J , Sl
τ−−→ S′l :

K[M]
τ−−→ (νũ, x̃)(KΓ | K ′∆ |M) = K ′[M] = M?

1

Now, context K is the same in K[N]. Then K∆ occurs identically in K[N], and this
reduction can be matched by a finite weak transition:

K[N] =⇒ (νũ, x̃)(KΓ | K ′′∆ | N) = K ′′[N] = N?
1

By subject reduction (Theorem 3.1), ` S′l :: xl:Cl; hence, K ′,K ′′ are in KΓ;∆. Hence, the
pair (K ′[M],K ′′[N]) is in S (as M =⇒M) and so it is inR.

(c) M τ−−→ M ′ and K[M]
τ−−→ K[M ′]. Since M = (νx)(D̂ | z(y).(Ê | F̂)), the only possi-

bility is that there is a D̂1 such that D̂ τ−−→ D̂1 and M ′ = (νx)(D̂1 | z(y).(Ê | F̂)). This
way,

K[M]
τ−−→ (νũ, x̃)(KΓ | K∆ |M ′) = K[M ′] = M?

1

We observe that K[N] cannot match this action, but K[N] =⇒ K[N] is a valid weak
transition. Hence, N?

1 = K[N]. By subject reduction (Theorem 3.1), we infer that `
K[M ′] :: z:A⊗ B. We use this fact to observe that the pair (K[M ′],K[N]) is included in
S. Hence, it is inR.

(d) There is an interaction between M and KΓ or between M and K∆: this is only possible by
the interaction of D̂ with KΓ or K∆ on names in ũ, x̃. Again, the only possible weak tran-
sition from K[N] matching this reduction is K[N] =⇒ K[N], and the analysis proceeds as
in the previous case.

2. Case α 6= τ . Then the only possibility, starting from K[M], is an output action of the form
α = z(y). This action can only originate in M :

K[M]
z(y)−−→ (νx̃, ũ)(KΓ | K∆ | (νx)(D̂ | (νy)(Ê | F̂))) = M?

1

Process K[N] can match this action via the following finite (weak) transition:

K[N]
z(y)
=⇒ (νx̃, ũ)(K ′Γ | K ′∆ | (νy)((νx)(D̂′ | Ê′) | F̂ ′)) = N?

1

Observe how N?
1 reflects the changes in K[N] due to the possible reductions before and after α.

By definition of ≈ (output case), we consider the composition of M?
1 and N?

1 with any V such
that y:A ` V :: −:1. Using the typings in (C.1) and subject reduction (Theorem 3.1), we infer

`M?
2 = (νx̃, ũ)(KΓ | K∆ | (νx)(D̂ | (νy)(Ê | V | F̂))) :: z:B

` N?
2 = (νx̃, ũ)(K ′Γ | K ′∆ | (νy)((νx)(D̂′ | Ê′ | V) | F̂ ′)) :: z:B

Hence, the pair (M?
2 , N

?
2) is inW`z:A⊗B and so it is inR.

61

Now, let us suppose that K[N] moves first: K[N]
α−−→ N?

1 . We have to find a matching action α from
K[M]: K[M]

α
=⇒ M?

1 . Similarly as before, there are two cases: either α = τ or α = z(y). The
former is as detailed before; the only difference is that reductions fromK[N] can only be originated in
K∆; these are matched by K[M] with weak transitions originating in both K and in M . We therefore
obtain pairs of processes in S−1.

We now detail the case in which α = z(y). We have:

K[N]
z(y)−−→ (νx̃, ũ)(KΓ | K∆ | (νy)((νx)(D̂ | Ê) | F̂)) = N?

1

and this action can be matched by K[M] with a finite weak transition:

K[M]
z(y)
=⇒ (νx̃, ũ)(K ′Γ | K ′∆ | (νx)(D̂′ | (νy)(Ê′ | F̂ ′))) = M?

1

where M?
1 takes into account the possible reductions before and after α. As before, we consider the

composition of N?
1 and M?

1 with any V such that y:A ` V :: −:1. Using (C.1), we can infer both

` N?
2 = (νx̃, ũ)(KΓ | K∆ | (νy)((νx)(D̂ | Ê | V) | F̂)) :: z:B

`M?
2 = (νx̃, ũ)(K ′Γ | K ′∆ | (νx)(D̂′ | (νy)(Ê′ | V | F̂ ′))) :: z:B

Hence, the pair (N?
2 ,M

?
2) is inW`z:A⊗B and so it is inR. This concludes the proof for this case.

Proof conversion A-4 We then have that

Γ; ∆, y:A⊗B ` cutD (x.⊗L y (z.y. Exzy)) M = (νx)(D̂ | y(z).Ê) :: T

Γ; ∆, y:A⊗B ` ⊗L y (z.y. cutD (x.Exzy)) N = y(z).(νx)(D̂ | Ê) :: T

with
Γ; ∆1 ` D̂ :: x:C Γ; ∆2, x:C, z:A, y:B ` Ê :: T (C.2)

and ∆ = ∆1,∆2. We show that M 'c N implies Γ; ∆, y:A⊗B `M ≈ N ::T .

By virtue of Prop. 6.3, we have to show that for every K ∈ KΓ;∆,y:A⊗B , we have ·; · ` K[M] ≈
K[N] :: T . In turn, this implies exhibiting a typed context bisimilarity R containing the pair
(K[M],K[N]). We thus defineR as

R = I`T ∪W`T

recalling that IΓ;∆`T stands for the relation {(P,Q) : Γ; ∆ ` P :: T, Γ; ∆ ` Q :: T}. We show that
R is a typed context bisimilarity. Pick any K ∈ KΓ;∆,y:A⊗B . Using Def. 6.5, we can assume

K = (νũ, x̃, y)(• | KΓ | K∆ | V)

where

• KΓ ≡
∏
i∈I !ui(yi).Ri, with ` Ri :: yi:Gi, for every ui:Gi ∈ Γ;

• K∆ ≡
∏
j∈J Sj , with ` Sj :: xj :Cj , for every xj :Cj ∈ ∆;

• ` V :: y:A⊗B.

62

Clearly, (K[M],K[N]) ∈ LT , and so it is in R. Now, suppose K[M] moves first: K[M]
α−−→ M?

1 .
We have to find a matching action α fromK[N], i.e., K[N]

α
=⇒ N?

1 . We consider two possible cases:

1. Case α = τ . We consider the possibilities for the origin of the reduction:

(a) KΓ
τ−−→ K ′Γ: This cannot be the case, as by construction this process corresponds to the

composition of zero or more input-guarded replications which cannot evolve on their own.
(b) K∆

τ−−→ K ′∆ and K[M]
τ−−→ (νũ, x̃, y)(KΓ | K ′∆ | V |M) = M?

1 . Since K∆ occurs
identically in both processes, this reduction can be matched by K[N] with a finite weak
transition:

K[N] =⇒ (νũ, x̃, y)(KΓ | K ′′∆ | V ′ |M ′) = N?
1

Using subject reduction (Theorem 3.1) it can be shown that K ′,K ′′ ∈ KΓ;∆,y:A⊗B , and
that V ′ and M ′ preserve the type of V and M , respectively. Hence, both ` M?

1 :: T and
` N?

1 :: T hold, and the pair (M?
1 , N

?
1) is in LT and so it is inR.

(c) V τ−−→ V ′ and K[M]
τ−−→ (νũ, x̃, y)(KΓ | K∆ | V ′ |M) = M?

1 . This case proceeds
similarly as the previous one, as V occurs in both processes.

(d) M τ−−→M ′ andK[M]
τ−−→ (νũ, x̃)(KΓ | K∆ | V |M ′) = M?

1 . SinceM = (νx)(D̂ | y(z).Ê),
the only possibility is that there is a D̂1 such that D̂ τ−−→ D̂1 andM ′ = (νx)(D̂1 | y(z).Ê).
This way,

K[M]
τ−−→ (νũ, x̃)(KΓ | K∆ | V |M ′) = K[M ′] = M?

1

We observe that K[N] cannot match this action, as D̂ is behind a prefix. Nevertheless,
K[N] =⇒ K[N] is a valid weak transition, and so N?

1 = K[N]. By subject reduction
(Theorem 3.1), we infer that ` K[M ′] :: T . Hence, the pair (M?

1 , N
?
1) is included in LT ,

and so it is inR.
(e) The reduction arises from the interaction of V and M . This can only correspond to a

synchronization on y. We have:

K[M]
τ−−→ (νũ, x̃)(KΓ | K∆ | (νy)(V ′ | (νx)(D̂ | Êσ))) = M?

1

where σ stands for the substitution derived from the synchronization. This reduction can be
matched by K[N] via a finite weak transition:

K[N] =⇒ (νũ, x̃)(KΓ | K ′∆ | (νy)(V ′ | (νx)(D̂′ | Ê′)σ)) = N?
1

where N?
1 captures the fact that internal actions could have occurred before and after the

synchronization on y. By subject reduction (Theorem 3.1), typing is preserved in both
cases, and so (M?

1 , N
?
1) ∈ R.

2. Case α 6= τ . Then α corresponds to the execution of some behavior described by T , in the
right-hand side typing. However, this cannot be the case since, as specified by the typings in
(C.2), the behavior described by T can only be provided by Ê, which is behind an input prefix
on y, both in K[M] and K[N]. Therefore, behavior described by T cannot be exercised until
such a prefix is consumed, and we have that, necessarily, α = τ . Observe that once such prefixes
are consumed (via internal actions) the evolution corresponding to the behavior described by T
is still inR, as the continuation relationW`T is inR.

The analysis when K[N] moves first follows the same lines and is omitted.

63

Proof conversion C-11 We then have that

Γ; ∆, y:A⊕B ` cut!D (u.⊕L y (y.Euy) (y. Fuy))

M = (νu)((!u(z).D̂) | y.case(Ê, F̂)) :: T

Γ; ∆, y:A⊕B ` ⊕L y (y. cut!D (u.Euy)) (y. cut!D (u. Fuy))

N = y.case((νu)((!u(z).D̂) | Ê), (νu)((!u(z).D̂) | F̂)) :: T

with
Γ; · ` D̂ :: z:C Γ, u:C; ∆1, y:A ` Ê :: T Γ, u:C; ∆2, y:B ` F̂ :: T (C.3)

and ∆ = ∆1,∆2. We show that M 'c N implies Γ; ∆ `M ≈ N ::T .

By virtue of Prop. 6.3, we have to show that for every K ∈ KΓ;∆,y:A⊕B , we have ·; · ` K[M] ≈
K[N] :: T . In turn, this implies exhibiting a typed context bisimilarity R containing the pair
(K[M],K[N]). We thus defineR as

R = I`T ∪W`T

We now show that R is a typed context bisimilarity. Pick any K ∈ KΓ;∆,y:A⊕B . Using Def. 6.5, we
can assume

K = (νũ, x̃, y)(• | KΓ | K∆ | V)

where

• KΓ ≡
∏
i∈I !ui(yi).Ri, with ` Ri :: yi:Di, for every ui:Di ∈ Γ;

• K∆ ≡
∏
j∈J Sj , with ` Sj :: xj :Cj , for every xj :Cj ∈ ∆;

• ` V :: y:A⊕B.

Clearly, (K[M],K[N]) ∈ R. Now, suppose K[M] moves first: K[M]
α−−→ M?

1 . We have to find a
matching action α from K[N], i.e., K[N]

α
=⇒ N?

1 . The analysis is similar to the one detailed for the
commuting conversion No. A-4. We consider two possible cases:

1. Case α = τ . We consider the possibilities for the origin of the reduction:

(a) KΓ −→ K ′Γ: This cannot be the case, as by construction this process corresponds to the
composition of zero or more input guarded replications which cannot evolve on their own.

(b) M −→ M ′: This cannot be the case, as by inspecting the structure of M we observe that
both the input guarded replication on u, and the selection on y cannot proceed on their own.

(c) K∆ −→ K ′∆ and K[M] −→ (νũ, x̃)(KΓ | K ′∆ | V |M). This reduction can be matched
by K[N] with a finite weak transition, as K∆ occurs identically in both processes. Using
subject reduction (Theorem 3.1), it can be shown that the derivatives are still inR.

(d) V −→ V ′ and K[M] −→ (νũ, x̃)(KΓ | K∆ | V ′ |M) = M?
1 . This case proceeds simi-

larly, as V occurs identically in both K[M] and K[N].
(e) The reduction arises from a synchronization on y between V and M . Then we have two

subcases. The first one is when V
y.inr−−−→ V ′:

K[M] −→ (νũ, x̃)(KΓ | K∆ | (νy)(V ′ | (νu)((!u(z).D̂) | Ê))) = M?
1

64

This reduction can be matched by K[N] via a finite weak transition:

K[N] =⇒ (νũ, x̃)(KΓ | K ′∆ | (νy)(V ′′ | (νu)((!u(z).D̂) | Ê′))) = N?
1

where N?
1 reflects the fact that internal actions could have taken place after the synchro-

nization on y. The typing of the process can be shown to be preserved by subject reduction

(Theorem 3.1), and so (M?
1 , N

?
1) ∈ R. The second subcase is when S

y.inl−−→ S′; this case is
similar to the first one.

2. Case α 6= τ : Then α corresponds to the execution of some behavior described by T , in the right-
hand side typing. However, this cannot be the case since, as specified by the typings in (C.3), the
behavior described by T can only be provided by Ê or by F̂ , which are behind a selection prefix
on y, both inK[M] andK[N]. Therefore, the behavior described by T cannot be exercised until
such a prefix is consumed, and we have that, necessarily, α = τ . Observe that once such prefixes
are consumed (via internal actions) the evolution corresponding to the behavior described by T
is still inR, as the continuation relationW`T is inR.

The analysis when K[N]
α−−→ N?

1 follows the same lines and is omitted.

Appendix C.2. Proof of Theorem 7.2
We repeat the statement of Theorem 7.2 and present its full proof.

Theorem Appendix C.2 (7.2). Let A,B be any type, as in Def 3.1. Then the following hold:
(i) A⊗B ' B ⊗A

(ii) (A⊕B)(C ' (A(C) N (B(C)
(iii) !(ANB) ' !A⊗!B

Proof. We detail the proof of (i). We verify conditions (i)-(iv) hold for processes P 〈x,y〉, Q〈y,x〉 defined as

P 〈x,y〉 = x(u).y(n).([x↔n] | [u↔y])

Q〈y,x〉 = y(w).x(m).([y↔m] | [w↔x])

Checking (i)-(ii), i.e., · ;x:A⊗B ` P 〈x,y〉::y:B⊗A and · ; y:B⊗A ` Q〈y,x〉::x:A⊗B is easy; for instance,
the typing derivation for (i) is as follows:

x:B ` [x↔n] :: n:B
(Tid)

u:A ` [u↔y] :: y:A
(Tid)

u:A, x:B ` y(n).([x↔n] | [u↔y]) :: y:B ⊗A
(T⊗R)

x:A⊗B ` x(u).y(n).([x↔n] | [u↔y]) :: y:B ⊗A
(T⊗L)

Observe how the use of rule (Tid) ensures that typings hold for any A,B. We are then left to show (iii)
and (iv). We sketch only the proof of (iii); the proof of (iv) is analogous. Let M = (νy)(P 〈x,y〉 | Q〈y,z〉),
N = [x↔ z]; we need to show · ;x:A ⊗ B ` M ≈ N :: z:A ⊗ B. By Prop. 6.3, we have to show that
for every K ∈ K · ;x:A⊗B , we have ` K[M] ≈ K[N] :: z:A ⊗ B. In turn, this implies exhibiting a typed
context bisimilarityR containing (K[M],K[N]).

Letting S = {(R1, R2) : K[M] =⇒ R1, K[N] =⇒ R2}, we set R=W`z:A⊗B ∪ S ∪ S−1. We
show R is a typed context bisimilarity. Pick any K ∈ K · ;x:A⊗B . Using Def. 6.5, we can assume

65

K = (νx)(T 〈x〉 | [·]) where ` T 〈x〉 :: x:A ⊗ B. By Lemma 3.2 and Theorem 5.1, there exist l, T 〈x〉1

such that T 〈x〉
x(l)
=⇒ T

〈x〉
1 in a finite transition. Clearly, (K[M],K[N]) ∈ R. Now, suppose K[N]

α−−→ N?
1 .

We have to find a matching action α from K[M], i.e., K[N]
α

=⇒ M?
1 . K[N] has only an internal action,

which leads to the renaming of T 〈x〉: K[N]
τ−→ T 〈z〉 = N?

1 . Using Theorem 5.1,K[M] can match this action
with a finite weak transition: K[M] =⇒ (νn)(T

〈n〉
1 | z(m).([l↔m] | [n↔ z])) = M?

1 . Using Theorem

3.1, we know that (N?
1 ,M

?
1) ∈ S−1. Now supposeN?

1

z(l)−−−→ T
〈z〉
1 ; M?

1 can match this action with an output

followed by a renaming: M?
1

z(m)
=⇒ T

〈z〉
1 | [l↔m]. By definition of≈ (output clause), we take a process S〈c〉

such that ·; c:A ` S〈c〉 :: −:1, and compose it with N?
1 and M?

1 . We thus obtain N?
2 = (νl)(T

〈z〉
1 | S〈l〉)

and M?
2 = (νm)(T

〈z〉
1 | [l ↔ m] | S〈m〉); it can be easily checked that (N?

2 ,M
?
2) ∈ W`z:A⊗B . When

K[M] moves first, the analysis is similar and we omit it.

The proof of (ii) uses processes
·;x:A⊕B(C ` P 〈x,y〉 :: (A(C) N (B(C)

·; y:(A(C) N (B(C) ` Q〈y,x〉 :: x:A⊕B(C defined as:

P 〈x,y〉 = y.case(M,N) where M = y(m).x(n).(n.inl; [m↔n] | [x↔y])

N = y(v).x(w).(w.inr; [v↔w] | [x↔y])

Q〈y,x〉 = x(m).m.case(R,S) where R = y.inl; y(n).([m↔n] | [y↔x])

S = y.inr; y(w).([m↔w] | [y↔x])

The proof of (iii) uses processes
·;x:!(ANB) ` P 〈x,y〉 :: y:!A⊗!B
·; y:!A⊗!B ` Q〈y,x〉 :: x:!(ANB) defined as:

P 〈x,y〉 = y(n).(M | N) where M = !n(m).x(l).l.inl; [l↔m]

N = !y(h).x(k).k.inr; [k↔h]

Q〈y,x〉 = y(z).!x(n).n.case(R,S) where R = z(l).[l↔n]

S = y(k).[k↔n]

Appendix D. Supplement to Section 4: Full List of Commuting Conversions

For convenience, below we recall the definition of 'c, given in Page 11.

Definition Appendix D.1 (Proof Conversions). We define'c as the least congruence on processes induced
by the process equalities in Figures D.6, D.7, D.8, and D.9.

We recall that not all permutations are sound nor are possible. In particular, for permutability of two
inference rules to be sound, one of them has to be a left rule; the permutation of two right rules leads to
unsound transformations. In the figures, we consider only combinations with rule (TNL1); permutations
involving (TNL2) are easily derivable. While there is no rule that can permute with (T1R), rule (T1L)
can permute with all rules without changing the process structure. The situation is similar for (T!R) and
(T!L): the former is incompatible for permutation with all rules, while the latter can permute with all rules,
excepting (T!R). The effect of (T!L) in processes is a substitution; equated processes only differ in the scope
of such a substitution.

66

Figure D.6 Process equalities induced by proof conversions: Classes (A) and (B)

Γ; ∆ ` (νx)(P | z(y).(Q | R)) 'c z(y).((νx)(P | Q) | R) :: z:A⊗B (A-1)

Γ; ∆ ` (νx)(P | z(y).(Q | R)) 'c z(y).(Q | (νx)(P | R)) :: z:A⊗B (A-2)

Γ; ∆, y:A⊗B ` (νx)(P | y(z).Q) 'c y(z).(νx)(P | Q) :: T (A-3)

Γ; ∆, y:A⊗B ` (νx)(y(z).P | Q) 'c y(z).(νx)(P | Q) :: T (A-4)

Γ; ∆ ` (νx)(P | z(y).Q) 'c z(y).(νx)(P | Q) :: z:A(B (A-5)

Γ; ∆, y:A(B ` (νx)(P | y(z).(Q | R)) 'c y(z).((νx)(P | Q) | R) :: T (A-6)

Γ; ∆, y:A(B ` (νx)(P | y(z).(Q | R)) 'c y(z).(Q | (νx)(P | R)) :: T (A-7)

Γ; ∆, y:A(B ` (νx)(y(z).(Q | P) | R) 'c y(z).(Q | (νx)(P | R)) :: T (A-8)

Γ; ∆ ` (νx)(P | z.case(Q,R)) 'c z.case((νx)(P | Q), (νx)(P | R)) :: z:A N B (A-9)

Γ; ∆, y:A N B ` (νx)(P | y.inl;Q) 'c y.inl; (νx)(P | Q) :: T (A-10)

Γ; ∆, y:A N B ` (νx)(P | y.inr;R) 'c y.inr; (νx)(P | R) :: T (A-11)

Γ; ∆ ` (νx)(P | z.inl;Q) 'c z.inl; (νx)(P | Q) :: z:A⊕B (A-12)

Γ; ∆ ` (νx)(P | z.inr;R) 'c z.inr; (νx)(P | R) :: z:A⊕B (A-13)

Γ; ∆, y:A⊕B ` (νx)(P | y.case(Q,R)) 'c y.case((νx)(P | Q), (νx)(P | R)) :: T (A-14)

Γ, u:A; ∆ ` (νx)(P | u(y).Q) 'c u(y).(νx)(P | Q) :: T (A-15)

Γ; ∆, y:A⊗B ` (νx)(y(z).P | R) 'c y(z).(νx)(P | R) :: T (B-1)

Γ; ∆, y:A(B ` (νx)(y(z).(P | Q) | R) 'c y(z).(P | (νx)(Q | R)) :: T (B-2)

Γ; ∆, y:A N B ` (νx)(y.inl;P | R) 'c y.inl; (νx)(P | R) :: T (B-3)

Γ; ∆, y:A N B ` (νx)(y.inr;P | R) 'c y.inr; (νx)(P | R) :: T (B-4)

Γ; ∆, y:A⊕B ` (νx)(y.case(P,Q) | R) 'c y.case((νx)(P | R), (νx)(Q | R)) :: T (B-5)

Γ; ∆ ` (νx)(P{y/u} | Q) 'c (νx)(P | Q){y/u} :: T (B-6)

Γ; ∆ ` (νx)(P | Q{y/u}) 'c (νx)(P | Q){y/u} :: T (B-7)

Γ, u:A; ∆ ` (νx)(u(y).P | R) 'c u(y).(νx)(P | R) :: T (B-8)

Γ, u:A; ∆ ` (νx)(P | u(y).R) 'c u(y).(νx)(P | R) :: T (B-9)

67

Figure D.7 Process equalities induced by proof conversions: Class (C)

Γ; · ` (νu)((!u(y).P) | 0) 'c 0 :: −:1 (C-1)

Γ; ∆ ` (νu)((!u(y).P) | x(z).(Q | R)) 'c

x(z).((νu)((!u(y).P) | Q) | (νu)((!u(y).P) | R)) :: x:A⊗B (C-2)

Γ; ∆, y:A⊗B ` (νu)((!u(y).P) | y(z).Q) 'c y(z).(νu)((!u(y).P) | Q) :: T (C-3)

Γ; ∆ ` (νu)(!u(y).P | z(y).Q) 'c z(y).(νu)(!u(y).P | Q) :: z:A(B (C-4)

Γ; ∆, y:A(B ` (νu)((!u(w).P) | y(z).(Q | R)) 'c y(z).(((νu)(!u(w).P | Q) | (νu)((!u(w).P) | R))) :: T
(C-5)

Γ; ∆ ` (νu)((!u(y).P) | z.case(Q,R)) 'c z.case((νu)((!u(y).P) | Q), (νu)((!u(y).P) | R))::z:A N B
(C-6)

Γ; ∆, y:A N B ` (νu)(!u(z).P | y.inl;Q) 'c y.inl; (νu)(!u(z).P | Q) :: T (C-7)

Γ; ∆, y:A N B ` (νu)(!u(z).P | y.inr;R) 'c y.inr; (νu)(!u(z).P | R) :: T (C-8)

Γ; ∆ ` (νu)(!u(y).P | z.inl;Q) 'c z.inl; (νu)(!u(y).P | Q) :: z:A⊕B (C-9)

Γ; ∆ ` (νu)(!u(y).P | z.inr;R) 'c z.inr; (νu)(!u(y).P | R) :: z:A⊕B (C-10)

Γ; ∆, y:A⊕B ` (νu)(!u(z).P | y.case(Q,R)) 'c y.case((νu)(!u(z).P | Q), (νu)(!u(z).P | R)) :: T
(C-11)

Γ; ∆ ` (νu)(!u(y).P | !x(z).Q) 'c !x(z).(νu)(!u(y).P | Q) :: x:!A (C-12)

Γ; ∆ ` (νu)(!u(y).P | Q{y/v}) 'c (νu)(!u(y).P | Q){y/v} :: T (C-13)

Γ; ∆ ` (νu)(!u(y).P | v(y).Q) 'c v(y).(νu)(!u(y).P | Q)) :: T (C-14)

68

Figure D.8 Process equalities induced by proof conversions: Class (D).

Γ; ∆, x:A⊗B, z:C ⊗D ` x(y).z(w).P 'c z(w).x(y).P :: T (D-1)

Γ; ∆, z:D(C, x:A(B ` z(w).(R | x(y).(P | Q)) 'c x(y).(P | z(w).(R | Q)) :: T (D-2)

Γ; ∆, z:D(C, x:A(B ` z(w).(R | x(y).(P | Q)) 'c x(y).(z(w).(R | P) | Q) :: T (D-3)

Γ; ∆, w:C(D,x:A⊗B ` w(z).(Q | x(y).P) 'c x(y).w(z).(Q | P) :: T (D-4)

Γ; ∆, w:C(D,x:A⊗B ` w(z).(x(y).P | Q) 'c x(y).w(z).(P | Q) :: T (D-5)

Γ, u:A, v:C; ∆ ` u(y).v(x).P 'c v(x).u(y).P :: T (D-6)

Γ, u:C; ∆, x:A(B ` u(z).x(y).(P | Q) 'c x(y).(u(z).P | Q) :: T (D-7)

Γ, u:C; ∆, x:A(B ` u(z).x(y).(P | Q) 'c x(y).(P | u(z).Q) :: T (D-8)

Γ, u:A; ∆, z:C ⊗D ` u(y).z(w).P 'c z(w).u(y).P :: T (D-9)

Γ; ∆, x:A⊕B, y:C ⊕D ` y.case(x.case(P1, Q1), x.case(P2, Q2)) 'c

x.case(y.case(P1, P2), y.case(Q1, Q2)) :: T (D-10)

Γ, u:C; ∆, x:A⊕B ` u(z).x.case(P,Q) 'c x.case(u(z).P , u(z).Q) :: T (D-11)

Γ; ∆, w:A(E, z:C ⊕D ` z.case(w(y).(P | R1) , w(y).(P | R2)) 'c w(y).(P | z.case(R1, R2)) :: T
(D-12)

Γ; ∆, z:C ⊕D,x:A⊗B ` z.case(x(y).P, x(y).Q) 'c x(y).z.case(P,Q) :: T (D-13)

Γ; ∆, x:A N B, y:C N D ` x.inl; y.inl;P 'c y.inl;x.inl;P :: T (D-14)

Γ; ∆, x:A⊕B, y:C N D ` x.case(y.inl;P, y.inl;Q) 'c y.inl;x.case(P,Q) :: T (D-15)

Γ, u:C; ∆, z:A N B ` z.inl;u(y).P 'c u(y).z.inl;P :: T (D-16)

Γ; ∆, z:C N D,x:A(B ` z.inl;x(y).(P | Q) 'c x(y).(z.inl;P | Q) :: T (D-17)

Γ; ∆, z:C N D,x:A(B ` z.inl;x(y).(P | Q) 'c x(y).(P | z.inl;Q) :: T (D-18)

Γ; ∆, z:C N D,x:A⊗B ` z.inl;x(y).P 'c x(y).z.inl;P :: T (D-19)

69

Figure D.9 Process equalities induced by proof conversions: Class (E).

Γ; ∆, z:C N D ` z.inl;x(y).(P | Q) 'c x(y).(P | z.inl;Q) :: x:A⊗B (E-1)

Γ; ∆, z:C N D ` z.inl;x(y).(P | Q) 'c x(y).(z.inl;P | Q) :: x:A⊗B (E-2)

Γ; ∆, z:D ⊕ E ` z.case(x(y).(P1 | Q) , x(y).(P2 | Q)) 'c x(y).(Q | z.case(P1 , P2)) :: x:A⊗B (E-3)

Γ; ∆, z:D ⊕ E ` z.case(x(y).(Q | P1) , x(y).(Q | P2)) 'c x(y).(z.case(P1 , P2) | Q) :: x:A⊗B (E-4)

Γ, u:C; ∆ ` u(w).x(y).(P | Q) 'c x(y).(u(w).P | Q) :: x:A⊗B (E-5)

Γ, u:C; ∆ ` u(w).x(y).(P | Q) 'c x(y).(P | u(w).Q) :: x:A⊗B (E-6)

Γ; ∆, w:C(D ` w(z).(R | x(y).(P | Q)) 'c x(y).(P | w(z).(R | Q)) :: x:A⊗B (E-7)

Γ; ∆, x:C(D ` z(y).(x(w).(P | Q) | R) 'c x(w).(P | z(y).(R | Q)) :: z:A⊗B (E-8)

Γ; ∆, z:C ⊗D ` z(w).x(y).(P | Q) 'c x(y).(z(w).P | Q) :: x:A⊗B (E-9)

Γ; ∆, z:C ⊗D ` z(w).x(y).(P | Q) 'c x(y).(P | z(w).Q) :: x:A⊗B (E-10)

Γ; ∆, z:C N D ` z.inl;x(y).P 'c x(y).z.inl;P :: x:A(B (E-11)

Γ; ∆, z:C ⊕D ` x(y).z.case(P,Q) 'c z.case(x(y).P , x(y).Q) :: x:A(B (E-12)

Γ, u:C; ∆ ` u(w).x(y).P 'c x(y).u(w).P :: x:A(B (E-13)

Γ; ∆, w:C(D ` w(z).(R | x(y).P)) 'c x(y).w(z).(R | P)) :: x:A(B (E-14)

Γ; ∆, z:C ⊗D ` x(y).z(w).P 'c z(w).x(y).P :: x:A(B (E-15)

Γ; ∆, y:C N D ` y.inl;x.case(P,Q) 'c x.case(y.inl;P , y.inl;Q) :: x:A N B (E-16)

Γ; ∆, y:C ⊕D ` x.case(y.case(P1, Q1), y.case(P2, Q2)) 'c

y.case(x.case(P1, P2), x.case(Q1, Q2)) :: x:A N B (E-17)

Γ;u:A; ∆ ` x.case(u(y).P , u(y).Q) 'c u(y).x.case(P,Q) :: x:A N B (E-18)

Γ; ∆, z:C(D ` z(y).(R | x.case(P,Q)) 'c x.case(z(y).(R | P) , z(y).(R | Q)) :: x:A N B (E-19)

Γ; ∆, x:A⊗B ` z.case(x(y).P , x(y).Q) 'c x(y).z.case(P,Q) :: z:C N D (E-20)

Γ; ∆, y:C N D ` y.inl;x.inl;P 'c x.inl; y.inl;P :: x:A⊕B (E-21)

Γ; ∆, y:A⊕B ` x.inl; y.case(P,Q) 'c y.case(x.inl;P, x.inl;Q) :: x:A⊕B (E-22)

Γ;u:A; ∆ ` x.inl;u(y).P 'c u(y).x.inl;P :: x:A⊕B (E-23)

Γ; ∆, z:D(C ` z(y).(Q | x.inl;P) 'c x.inl; z(y).(Q | P) :: x:A⊕B (E-24)

Γ; ∆, x:A⊗B ` x(y).z.inl;P 'c z.inl;x(y).P :: z:C ⊕D (E-25)

Γ; ∆, x:!C ` z(y).(P{x/u} | Q) 'c (z(y).(P | Q)){x/u} :: z:A⊗B (E-26)

Γ; ∆, x:!C ` z(y).(P | Q{x/u}) 'c (z(y).(P | Q)){x/u} :: z:A⊗B (E-27)

70

	Introduction
	Process Model: Syntax and Semantics
	Session Types as Intuitionistic Linear Logic Propositions
	Inference Permutability and Proof Conversions
	Linear Logical Relations for Session-Typed Processes
	Preliminaries
	Logical Relations for Strong Normalization of Well-typed Processes
	Logical Relations for Confluence of Well-Typed Processes

	Observational Equivalences for Session-Typed Processes
	Auxiliary Definitions
	Typed Context Bisimilarity
	Properties of Typed Context Bisimilarity

	Applications
	Soundness of Proof Conversions
	A Behavioral Characterization of Session Type Isomorphisms

	Related Work
	Concluding Remarks
	Proofs of Section 5 (Logical Relations)
	Proof of Proposition 5.7
	Proof of Proposition 5.8
	Proof of Proposition 5.12
	Proof of Lemma 5.2
	Proof of Lemma 5.4

	Proofs from Section 6 (Typed Context Bisimilarity)
	Proof of Proposition 6.3
	Additional Cases for Proof of Lemma 6.1

	Proofs from Section 7.1 (Applications)
	Additional Cases for the Proof of Theorem 7.1
	Proof of Theorem 7.2

	Supplement to Section 4: Full List of Commuting Conversions

