
A Logical Basis for the Verification of Message-Passing Programs

Jorge A. Pérez

Fundamental Computing Group
University of Groningen, The Netherlands

https://www.rug.nl/fse/fc

Dutch Formal Methods Day
April 16, 2024

https://www.jperez.nl
https://www.rug.nl/fse/fc


My Group’s Research: Keywords (and Slogans)

Concurrency Theory, Message-Passing, Programming Languages, Verification

• Type systems
Slogan: Well-typed programs can’t go wrong (Milner)

• Session types for communication correctness
Slogan: What and when should be sent through a channel

• Process calculi
Slogan: The π-calculus treats processes like the λ-calculus treats functions
• Propositions as sessions

Today An overview in two parts
I A gentle introduction to session types
I Runtime verification based on session types (presented in RV’23)

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 2 / 25

https://doi.org/10.1007/978-3-031-44267-4_4


My Group’s Research: Keywords (and Slogans)

Concurrency Theory, Message-Passing, Programming Languages, Verification

• Type systems
Slogan: Well-typed programs can’t go wrong (Milner)

• Session types for communication correctness
Slogan: What and when should be sent through a channel

• Process calculi
Slogan: The π-calculus treats processes like the λ-calculus treats functions
• Propositions as sessions

Today An overview in two parts
I A gentle introduction to session types
I Runtime verification based on session types (presented in RV’23)

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 2 / 25

https://doi.org/10.1007/978-3-031-44267-4_4


My Group’s Research: Keywords (and Slogans)

Concurrency Theory, Message-Passing, Programming Languages, Verification

• Type systems
Slogan: Well-typed programs can’t go wrong (Milner)

• Session types for communication correctness
Slogan: What and when should be sent through a channel

• Process calculi
Slogan: The π-calculus treats processes like the λ-calculus treats functions
• Propositions as sessions

Today An overview in two parts
I A gentle introduction to session types
I Runtime verification based on session types (presented in RV’23)

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 2 / 25

https://doi.org/10.1007/978-3-031-44267-4_4


My Group’s Research: Keywords (and Slogans)

Concurrency Theory, Message-Passing, Programming Languages, Verification

• Type systems
Slogan: Well-typed programs can’t go wrong (Milner)

• Session types for communication correctness
Slogan: What and when should be sent through a channel

• Process calculi
Slogan: The π-calculus treats processes like the λ-calculus treats functions
• Propositions as sessions

Today An overview in two parts
I A gentle introduction to session types
I Runtime verification based on session types (presented in RV’23)

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 2 / 25

https://doi.org/10.1007/978-3-031-44267-4_4


My Group’s Research: Keywords (and Slogans)

Concurrency Theory, Message-Passing, Programming Languages, Verification

• Type systems
Slogan: Well-typed programs can’t go wrong (Milner)

• Session types for communication correctness
Slogan: What and when should be sent through a channel

• Process calculi
Slogan: The π-calculus treats processes like the λ-calculus treats functions
• Propositions as sessions

Today An overview in two parts
I A gentle introduction to session types
I Runtime verification based on session types (presented in RV’23)

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 2 / 25

https://doi.org/10.1007/978-3-031-44267-4_4


Part I

Session Types for Message-Passing Concurrency

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 3 / 25



When is a Program Correct?

Sequential Programs

“Programs produce outputs that are
consistent with their input”

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 4 / 25



When is a Program Correct?

Sequential Programs

“Programs produce outputs that are
consistent with their input”

Concurrent Programs

“Programs always
respect their intended protocols”

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 5 / 25



When is a Program Correct?

Sequential Programs

“Programs produce outputs that are
consistent with their input”

Concurrent Programs

“Programs always
respect their intended protocols”

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 5 / 25



Type Systems: From Data to Behaviors

• Can detect bugs before programs are run

• Present in many programming languages

• A sound notion of correctness
A program is either correct or incorrect

Sequential Languages
• Data type systems classify values in a program

• Examples: Integers, strings of characters

Concurrent Languages
• Behavioral type systems classify protocols in a program

• Example: “first send username, then receive true/false, finally close”

• A typical bug: sending messages in the wrong order

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 6 / 25



Type Systems: From Data to Behaviors

• Can detect bugs before programs are run

• Present in many programming languages

• A sound notion of correctness
A program is either correct or incorrect

Sequential Languages
• Data type systems classify values in a program

• Examples: Integers, strings of characters

Concurrent Languages
• Behavioral type systems classify protocols in a program

• Example: “first send username, then receive true/false, finally close”

• A typical bug: sending messages in the wrong order

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 6 / 25



Type Systems: From Data to Behaviors

• Can detect bugs before programs are run

• Present in many programming languages

• A sound notion of correctness
A program is either correct or incorrect

Sequential Languages
• Data type systems classify values in a program

• Examples: Integers, strings of characters

Concurrent Languages
• Behavioral type systems classify protocols in a program

• Example: “first send username, then receive true/false, finally close”

• A typical bug: sending messages in the wrong order

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 6 / 25



Protocols as Session Types

Session types uniformly describe protocols in terms of

• communication actions (input and output)

• labeled choices (offers and selections)

• sequential composition

• recursion

Session protocols are attached to interaction devices:
• channel endpoints
• channels in languages like Go
• π-calculus names
• · · ·

Sequentiality in types goes hand-in-hand with sequentiality in processes

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 7 / 25



Example: A Two-Buyer Protocol

Alice and Bob cooperate in buying a book from Seller:

1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks whether Bob can contribute in buying the book.

3. Alice uses the answer from Bob to interact with Seller, either:
a) completing the payment and arranging delivery details
b) canceling the transaction

4. In case 3(a) Alice contacts Bob to get his address, and forwards it to
Seller.

4’. In case 3(b) Alice is in charge of gracefully concluding the conversation.



Example: A Two-Buyer Protocol

Alice and Bob cooperate in buying a book from Seller:

1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks whether Bob can contribute in buying the book.

3. Alice uses the answer from Bob to interact with Seller, either:
a) completing the payment and arranging delivery details
b) canceling the transaction

4. In case 3(a) Alice contacts Bob to get his address, and forwards it to
Seller.

4’. In case 3(b) Alice is in charge of gracefully concluding the conversation.



Example: A Two-Buyer Protocol

Alice and Bob cooperate in buying a book from Seller:

1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks whether Bob can contribute in buying the book.

3. Alice uses the answer from Bob to interact with Seller, either:
a) completing the payment and arranging delivery details
b) canceling the transaction

4. In case 3(a) Alice contacts Bob to get his address, and forwards it to
Seller.

4’. In case 3(b) Alice is in charge of gracefully concluding the conversation.



Example: A Two-Buyer Protocol

Alice and Bob cooperate in buying a book from Seller:

1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks whether Bob can contribute in buying the book.

3. Alice uses the answer from Bob to interact with Seller, either:
a) completing the payment and arranging delivery details
b) canceling the transaction

4. In case 3(a) Alice contacts Bob to get his address, and forwards it to
Seller.

4’. In case 3(b) Alice is in charge of gracefully concluding the conversation.



Example: A Two-Buyer Protocol

Alice and Bob cooperate in buying a book from Seller:

1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks whether Bob can contribute in buying the book.

3. Alice uses the answer from Bob to interact with Seller, either:
a) completing the payment and arranging delivery details
b) canceling the transaction

4. In case 3(a) Alice contacts Bob to get his address, and forwards it to
Seller.

4’. In case 3(b) Alice is in charge of gracefully concluding the conversation.



Example: A Two-Buyer Protocol

Alice and Bob cooperate in buying a book from Seller:

1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks whether Bob can contribute in buying the book.

3. Alice uses the answer from Bob to interact with Seller, either:
a) completing the payment and arranging delivery details
b) canceling the transaction

4. In case 3(a) Alice contacts Bob to get his address, and forwards it to
Seller.

4’. In case 3(b) Alice is in charge of gracefully concluding the conversation.



The Syntax of Session Types

S ::= !U ;S output value of type U , continue as S

| ?U ;S input value of type U , continue as S

| N{li : Si}i∈I offer a selection between S1, . . . ,Sn

| ⊕{li : Si}i∈I select between S1, . . . ,Sn

| µt .S | t recursion

| end terminated protocol

(Labels l1, . . . , ln are pairwise different.)

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 9 / 25



Example: A Two-Buyer Protocol

Two separate protocols, with Alice “leading” the interactions:

• A session type for Seller (in its interaction with Alice):

SSA = ?book; !quote; N

(
buy : ?paym; ?address; !ok; end

cancel : ?thanks; !bye; end

• A session type for Alice (in its interaction with Bob):

SAB = !cost; N

(
share : ?address; !ok; end

close : !bye; end

Note:
I The above protocols are specified in the binary setting
I Session types have been developed also in the more general multiparty setting



Example: A Two-Buyer Protocol

Two separate protocols, with Alice “leading” the interactions:

• A session type for Seller (in its interaction with Alice):

SSA = ?book; !quote; N

(
buy : ?paym; ?address; !ok; end

cancel : ?thanks; !bye; end

• A session type for Alice (in its interaction with Bob):

SAB = !cost; N

(
share : ?address; !ok; end

close : !bye; end

Note:
I The above protocols are specified in the binary setting
I Session types have been developed also in the more general multiparty setting



Example: A Two-Buyer Protocol

Desiderata for the implementations of Alice, Bob, and Seller:

• Fidelity – they follow the intended protocol.
- Alice doesn’t continue the transaction if Bob can’t contribute
- Alice chooses among the options provided by Seller

• Safety – they don’t feature communication errors.
• Deadlock-Freedom – they do not “get stuck” while running the
protocol.

• Termination – they do not engage in infinite behavior (that may
prevent them from completing the protocol)

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 11 / 25



Example: A Two-Buyer Protocol

Desiderata for the implementations of Alice, Bob, and Seller:

• Fidelity – they follow the intended protocol.
• Safety – they don’t feature communication errors.

- Seller always returns an integer when Alice requests a quote

• Deadlock-Freedom – they do not “get stuck” while running the
protocol.

• Termination – they do not engage in infinite behavior (that may
prevent them from completing the protocol)

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 11 / 25



Example: A Two-Buyer Protocol

Desiderata for the implementations of Alice, Bob, and Seller:

• Fidelity – they follow the intended protocol.
• Safety – they don’t feature communication errors.
• Deadlock-Freedom – they do not “get stuck” while running the
protocol.

- Alice eventually receives an answer from Bob on his contribution.

• Termination – they do not engage in infinite behavior (that may
prevent them from completing the protocol)

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 11 / 25



Example: A Two-Buyer Protocol

Desiderata for the implementations of Alice, Bob, and Seller:

• Fidelity – they follow the intended protocol.
• Safety – they don’t feature communication errors.
• Deadlock-Freedom – they do not “get stuck” while running the
protocol.

• Termination – they do not engage in infinite behavior (that may
prevent them from completing the protocol)

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 11 / 25



Example: A Two-Buyer Protocol

Desiderata for the implementations of Alice, Bob, and Seller:

• Fidelity – they follow the intended protocol.
• Safety – they don’t feature communication errors.
• Deadlock-Freedom – they do not “get stuck” while running the
protocol.

• Termination – they do not engage in infinite behavior (that may
prevent them from completing the protocol)

Correctness follows from the interplay of these properties.
Hard to enforce, especially when actions are “scattered around” in source programs.

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 11 / 25



Example: A Two-Buyer Protocol
Implementations for Alice, Bob, Seller should be compatible.

• Duality relates session types with opposite behaviors.
- the dual of input is output (and vice versa)
- branching is the dual of selection (and vice versa)

• Recall that SAB describes Alice’s viewpoint in her interaction with Bob:

SAB = !cost;N

(
share : ?address; !ok; end

close : !bye; end

• Given this, Bob’s implementation should conform to SAB, the dual of SAB:

SAB = ?cost;⊕
(
share : !address; ?ok; end

close : ?bye; end

• Also, Alice’s implementation should conform to both SSA and SAB.

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 12 / 25



Example: A Two-Buyer Protocol
Implementations for Alice, Bob, Seller should be compatible.
• Duality relates session types with opposite behaviors.

- the dual of input is output (and vice versa)
- branching is the dual of selection (and vice versa)

• Recall that SAB describes Alice’s viewpoint in her interaction with Bob:

SAB = !cost;N

(
share : ?address; !ok; end

close : !bye; end

• Given this, Bob’s implementation should conform to SAB, the dual of SAB:

SAB = ?cost;⊕
(
share : !address; ?ok; end

close : ?bye; end

• Also, Alice’s implementation should conform to both SSA and SAB.

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 12 / 25



Example: A Two-Buyer Protocol
Implementations for Alice, Bob, Seller should be compatible.
• Duality relates session types with opposite behaviors.

- the dual of input is output (and vice versa)
- branching is the dual of selection (and vice versa)

• Recall that SAB describes Alice’s viewpoint in her interaction with Bob:

SAB = !cost;N

(
share : ?address; !ok; end

close : !bye; end

• Given this, Bob’s implementation should conform to SAB, the dual of SAB:

SAB = ?cost;⊕
(
share : !address; ?ok; end

close : ?bye; end

• Also, Alice’s implementation should conform to both SSA and SAB.

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 12 / 25



Example: A Two-Buyer Protocol
Implementations for Alice, Bob, Seller should be compatible.
• Duality relates session types with opposite behaviors.

- the dual of input is output (and vice versa)
- branching is the dual of selection (and vice versa)

• Recall that SAB describes Alice’s viewpoint in her interaction with Bob:

SAB = !cost;N

(
share : ?address; !ok; end

close : !bye; end

• Given this, Bob’s implementation should conform to SAB, the dual of SAB:

SAB = ?cost;⊕
(
share : !address; ?ok; end

close : ?bye; end

• Also, Alice’s implementation should conform to both SSA and SAB.

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 12 / 25



Propositions as Sessions

Concurrency Logic
session types ↔ linear logic propositions

π-calculus processes ↔ proofs
process communication ↔ cut elimination

I All four correctness properties hold “for free”
I Firm justification for seminal work on session types
I Reference framework for expressiveness
I Canonical platform for extensions (e.g., sharing)

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 13 / 25



Part II

Runtime Verification Based on Session Types

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 14 / 25



In A Nutshell

I A verification methodology based on routers, protocol descriptions synthesized from
multiparty protocols.

I Combining and improving existing techniques, leveraging on propositions-as-sessions.
Validated with a practical implementation.

I Key idea: Routers enrich local descriptions by capturing intra-participant dependencies.
I Routers be can used for static verification (type systems, SCP’22) and also in a

dynamic verification setup (RV’23).

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 15 / 25

doi.org/10.1016/j.scico.2022.102840
https://doi.org/10.1007/978-3-031-44267-4_4


Multiparty Session Types

I A global type provides the entire protocol’s specification for multiple participants.
Participant implementations communicate with each other, without a coordinator.

I A simple authorization protocol:

Gauth = µX .s!c{login.c!a(passwd).a!s(succ).X , quit.end}

Three participants: client (c), server (s), authorization server (a)

I The global type is projected onto local types, one per participant, which provide a basis
for static or dynamic verification.

I Note: not all conceivable global types are projectable onto local types.

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 16 / 25



Multiparty Session Types

I A global type provides the entire protocol’s specification for multiple participants.
Participant implementations communicate with each other, without a coordinator.

I A simple authorization protocol:

Gauth = µX .s!c{login.c!a(passwd).a!s(succ).X , quit.end}

Three participants: client (c), server (s), authorization server (a)
I The global type is projected onto local types, one per participant, which provide a basis

for static or dynamic verification.
I Note: not all conceivable global types are projectable onto local types.

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 16 / 25



Dynamic Approach

: Overview

Concurrency
Distribution

Message-passing

B B

B

c a

s

I Multiparty session types (MPSTs): protocols for
distributed message-passing.

I MPSTs enable useful runtime verification techniques.
They rely on usual notions of well-formedness, which
limits their applicability.

I Many practical protocols not supported by existing RV
techniques: e.g., our running example, server requests
client to login through authorization service.

I Existing techniques require too much information about
components.

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 17 / 25



Dynamic Approach

: Overview

Concurrency
Distribution

Message-passing

B B

B

c a

s
I Multiparty session types (MPSTs): protocols for

distributed message-passing.

I MPSTs enable useful runtime verification techniques.
They rely on usual notions of well-formedness, which
limits their applicability.

I Many practical protocols not supported by existing RV
techniques: e.g., our running example, server requests
client to login through authorization service.

I Existing techniques require too much information about
components.

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 17 / 25



Dynamic Approach: Overview

Concurrency
Distribution

Message-passing

c c

c

c a

s
I New approach to runtime verification of distributed

components using MPSTs as monitors to verify protocol
conformance.

I Support expressive class of protocols.

I Components with unknown specification but observable
message-passing behavior.

I LTSs with minimal assumptions: “blackboxes”.

I Contributions:
I Verification framework.
I Compositional verification.
I Protocol conformance and transparency.
I Prototype implementation.

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 17 / 25



Dynamic Verification: Setup

Gauth

Mc

Ms Ma

Rc,s

Rs,a

Rc,a

Pc

Ps Pa

We use the global type (multiparty protocol) in
different ways:
I Obtain local views for verifying protocol

conformance
I Synthesize monitors for each participant
I Detect additional coordination messages



Our Setup: Blackboxes

Pc

Ps Pa

I Each blackbox assumed to belong to a protocol
participant: e.g., Pc .

I Blackboxes exchange messages asynchronously through
buffers: e.g., 〈c : Pc : ~m〉.

I Messages carry data or choices to resolve branching.

Pc

Pq
c Pe

cP l
c

c?s(quit〈〉) endc?s

(login〈〉)

c!a(pwd〈str〉)

〈c : Pc : s!c(quit〈〉)〉

〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 19 / 25



Our Setup: Blackboxes

Pc

Ps Pa

I Each blackbox assumed to belong to a protocol
participant: e.g., Pc .

I Blackboxes exchange messages asynchronously through
buffers: e.g., 〈c : Pc : ~m〉.

I Messages carry data or choices to resolve branching.

Pc

Pq
c Pe

cP l
c

c?s(quit〈〉) endc?s

(login〈〉)

c!a(pwd〈str〉)

〈c : Pc : s!c(quit〈〉)〉

〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 19 / 25



Our Setup: Blackboxes

Pc

Ps Pa

I Each blackbox assumed to belong to a protocol
participant: e.g., Pc .

I Blackboxes exchange messages asynchronously through
buffers: e.g., 〈c : Pc : ~m〉.

I Messages carry data or choices to resolve branching.

Pc

Pq
c Pe

c

P l
c

c?s(quit〈〉) end

c?s

(login〈〉)

c!a(pwd〈str〉)

〈c : Pc : s!c(quit〈〉)〉

〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 19 / 25



Our Setup: Blackboxes

Pc

Ps Pa

I Each blackbox assumed to belong to a protocol
participant: e.g., Pc .

I Blackboxes exchange messages asynchronously through
buffers: e.g., 〈c : Pc : ~m〉.

I Messages carry data or choices to resolve branching.

Pc

Pq
c Pe

c

P l
c

c?s(quit〈〉) end

c?s(login〈〉)

c!a(pwd〈str〉)

〈c : Pc : s!c(quit〈〉)〉

〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 19 / 25



Our Setup: Blackboxes

Pc

Ps Pa

I Each blackbox assumed to belong to a protocol
participant: e.g., Pc .

I Blackboxes exchange messages asynchronously through
buffers: e.g., 〈c : Pc : ~m〉.

I Messages carry data or choices to resolve branching.

Pc

Pq
c Pe

c

P l
c

c?s(quit〈〉) end

c?s(login〈〉)

c!a(pwd〈str〉)

〈c : Pc : s!c(quit〈〉)〉

〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 19 / 25



Our Setup: Blackboxes

Pc

Ps Pa

I Each blackbox assumed to belong to a protocol
participant: e.g., Pc .

I Blackboxes exchange messages asynchronously through
buffers: e.g., 〈c : Pc : ~m〉.

I Messages carry data or choices to resolve branching.

Pc Pq
c

Pe
c

P l
c

c?s(quit〈〉)

end

c?s(login〈〉)

c!a(pwd〈str〉)

〈c : Pc : s!c(quit〈〉)〉

〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 19 / 25



Our Setup: Blackboxes

Pc

Ps Pa

I Each blackbox assumed to belong to a protocol
participant: e.g., Pc .

I Blackboxes exchange messages asynchronously through
buffers: e.g., 〈c : Pc : ~m〉.

I Messages carry data or choices to resolve branching.

Pc Pq
c Pe

cP l
c

c?s(quit〈〉) endc?s(login〈〉)

c!a(pwd〈str〉)

〈c : Pc : s!c(quit〈〉)〉

〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 19 / 25



Our Setup: Blackboxes

Pc

Ps Pa

I Each blackbox assumed to belong to a protocol
participant: e.g., Pc .

I Blackboxes exchange messages asynchronously through
buffers: e.g., 〈c : Pc : ~m〉.

I Messages carry data or choices to resolve branching.

Pc Pq
c Pe

cP l
c

c?s(quit〈〉) endc?s(login〈〉)

c!a(pwd〈str〉)

〈c : Pc : s!c(quit〈〉)〉

〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 19 / 25



Our Setup: Blackboxes

Pc

Ps Pa

I Each blackbox assumed to belong to a protocol
participant: e.g., Pc .

I Blackboxes exchange messages asynchronously through
buffers: e.g., 〈c : Pc : ~m〉.

I Messages carry data or choices to resolve branching.

Pc Pq
c Pe

cP l
c

c?s(quit〈〉) endc?s(login〈〉)

c!a(pwd〈str〉)

〈c : Pc : s!c(quit〈〉)〉 〈c : Pq
c : ε〉

〈c : Pe
c : ε〉

c?s(quit〈〉)

end

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 19 / 25



Our Setup: Blackboxes

Pc

Ps Pa

I Each blackbox assumed to belong to a protocol
participant: e.g., Pc .

I Blackboxes exchange messages asynchronously through
buffers: e.g., 〈c : Pc : ~m〉.

I Messages carry data or choices to resolve branching.

Pc Pq
c Pe

cP l
c

c?s(quit〈〉) endc?s(login〈〉)

c!a(pwd〈str〉)

〈c : Pc : s!c(quit〈〉)〉 〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 19 / 25



Our Setup: Monitors

Mc

Ms Ma

Pc

Ps Pa

I Monitoring to shield the system against unexpected
behavior.

I Monitors: FSMs describing sequences of expected
incoming/outgoing messages.

I Forwards expected messages between its blackbox and
other monitored blackboxes.

I Unexpected messages result in error state.

I Monitored blackboxes: e.g., [〈c : Pc : ~m〉 :Mc : ~n ].

I Broadcast messages to coordinate blackboxes to
support more expressive protocols.

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 20 / 25



Networks of monitored blackboxes (1/2)

〈c : Pc : s!c(quit〈〉)〉 〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

〈s : Ps : ε〉 〈s : Pq
s : ε〉 〈s : Pe

s : ε〉
s!c(quit〈〉) end

[〈c : Pc : ε〉 : c?s{{quit〈〉.end}} : ε] | [〈s : Ps : ε〉 : s!c{{quit〈〉.end}} : ε]
↓τ

[〈c : Pc : ε〉 : c?s{{quit〈〉.end}} : s!c(quit〈〉)] | [〈s : Pq
s : ε〉 : end : ε]

↓τ
[〈c : Pc : s!c(quit〈〉)〉 : end : ε] | [〈s : Pq

s : ε〉 : end : ε]
↓τ

[〈c : Pq
c : ε〉 : end : ε] | [〈s : Pq

s : ε〉 : end : ε]
↓end
↓end

[〈c : Pe
c : ε〉 :X : ε] | [〈s : Pe

s : ε〉 :X : ε]



Networks of monitored blackboxes (1/2)

〈c : Pc : s!c(quit〈〉)〉 〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

〈s : Ps : ε〉 〈s : Pq
s : ε〉 〈s : Pe

s : ε〉
s!c(quit〈〉) end

Mc = c?s{{quit〈〉.end}} Ms = s!c{{quit〈〉.end}}

[〈c : Pc : ε〉 : c?s{{quit〈〉.end}} : ε] | [〈s : Ps : ε〉 : s!c{{quit〈〉.end}} : ε]
↓τ

[〈c : Pc : ε〉 : c?s{{quit〈〉.end}} : s!c(quit〈〉)] | [〈s : Pq
s : ε〉 : end : ε]

↓τ
[〈c : Pc : s!c(quit〈〉)〉 : end : ε] | [〈s : Pq

s : ε〉 : end : ε]
↓τ

[〈c : Pq
c : ε〉 : end : ε] | [〈s : Pq

s : ε〉 : end : ε]
↓end
↓end

[〈c : Pe
c : ε〉 :X : ε] | [〈s : Pe

s : ε〉 :X : ε]



Networks of monitored blackboxes (1/2)

〈c : Pc : s!c(quit〈〉)〉 〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

〈s : Ps : ε〉 〈s : Pq
s : ε〉 〈s : Pe

s : ε〉
s!c(quit〈〉) end

[〈c : Pc : ε〉 : c?s{{quit〈〉.end}} : ε] | [〈s : Ps : ε〉 : s!c{{quit〈〉.end}} : ε]

↓τ
[〈c : Pc : ε〉 : c?s{{quit〈〉.end}} : s!c(quit〈〉)] | [〈s : Pq

s : ε〉 : end : ε]
↓τ

[〈c : Pc : s!c(quit〈〉)〉 : end : ε] | [〈s : Pq
s : ε〉 : end : ε]

↓τ
[〈c : Pq

c : ε〉 : end : ε] | [〈s : Pq
s : ε〉 : end : ε]

↓end
↓end

[〈c : Pe
c : ε〉 :X : ε] | [〈s : Pe

s : ε〉 :X : ε]



Networks of monitored blackboxes (1/2)

〈c : Pc : s!c(quit〈〉)〉 〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

〈s : Ps : ε〉 〈s : Pq
s : ε〉 〈s : Pe

s : ε〉
s!c(quit〈〉) end

[〈c : Pc : ε〉 : c?s{{quit〈〉.end}} : ε] | [〈s : Ps : ε〉 : s!c{{quit〈〉.end}} : ε]
↓τ

[〈c : Pc : ε〉 : c?s{{quit〈〉.end}} : s!c(quit〈〉)] | [〈s : Pq
s : ε〉 : end : ε]

↓τ
[〈c : Pc : s!c(quit〈〉)〉 : end : ε] | [〈s : Pq

s : ε〉 : end : ε]
↓τ

[〈c : Pq
c : ε〉 : end : ε] | [〈s : Pq

s : ε〉 : end : ε]
↓end
↓end

[〈c : Pe
c : ε〉 :X : ε] | [〈s : Pe

s : ε〉 :X : ε]



Networks of monitored blackboxes (1/2)

〈c : Pc : s!c(quit〈〉)〉 〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

〈s : Ps : ε〉 〈s : Pq
s : ε〉 〈s : Pe

s : ε〉
s!c(quit〈〉) end

[〈c : Pc : ε〉 : c?s{{quit〈〉.end}} : ε] | [〈s : Ps : ε〉 : s!c{{quit〈〉.end}} : ε]
↓τ

[〈c : Pc : ε〉 : c?s{{quit〈〉.end}} : s!c(quit〈〉)] | [〈s : Pq
s : ε〉 : end : ε]

↓τ
[〈c : Pc : s!c(quit〈〉)〉 : end : ε] | [〈s : Pq

s : ε〉 : end : ε]

↓τ
[〈c : Pq

c : ε〉 : end : ε] | [〈s : Pq
s : ε〉 : end : ε]

↓end
↓end

[〈c : Pe
c : ε〉 :X : ε] | [〈s : Pe

s : ε〉 :X : ε]



Networks of monitored blackboxes (1/2)

〈c : Pc : s!c(quit〈〉)〉 〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

〈s : Ps : ε〉 〈s : Pq
s : ε〉 〈s : Pe

s : ε〉
s!c(quit〈〉) end

[〈c : Pc : ε〉 : c?s{{quit〈〉.end}} : ε] | [〈s : Ps : ε〉 : s!c{{quit〈〉.end}} : ε]
↓τ

[〈c : Pc : ε〉 : c?s{{quit〈〉.end}} : s!c(quit〈〉)] | [〈s : Pq
s : ε〉 : end : ε]

↓τ
[〈c : Pc : s!c(quit〈〉)〉 : end : ε] | [〈s : Pq

s : ε〉 : end : ε]
↓τ

[〈c : Pq
c : ε〉 : end : ε] | [〈s : Pq

s : ε〉 : end : ε]

↓end
↓end

[〈c : Pe
c : ε〉 :X : ε] | [〈s : Pe

s : ε〉 :X : ε]



Networks of monitored blackboxes (1/2)

〈c : Pc : s!c(quit〈〉)〉 〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

〈s : Ps : ε〉 〈s : Pq
s : ε〉 〈s : Pe

s : ε〉
s!c(quit〈〉) end

[〈c : Pc : ε〉 : c?s{{quit〈〉.end}} : ε] | [〈s : Ps : ε〉 : s!c{{quit〈〉.end}} : ε]
↓τ

[〈c : Pc : ε〉 : c?s{{quit〈〉.end}} : s!c(quit〈〉)] | [〈s : Pq
s : ε〉 : end : ε]

↓τ
[〈c : Pc : s!c(quit〈〉)〉 : end : ε] | [〈s : Pq

s : ε〉 : end : ε]
↓τ

[〈c : Pq
c : ε〉 : end : ε] | [〈s : Pq

s : ε〉 : end : ε]
↓end
↓end

[〈c : Pe
c : ε〉 :X : ε] | [〈s : Pe

s : ε〉 :X : ε]



Networks of monitored blackboxes (2/2)

〈c : Pc : s!c(quit〈〉)〉 〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

〈s : Ps : ε〉 〈s : Pq
s : ε〉 〈s : Pe

s : ε〉
s!c(quit〈〉) end

Mc = c?s{{login〈〉 . . .}} Ms = s!c{{quit〈〉.end}}

[〈c : Pc : ε〉 : c?s{{login〈〉 . . .}} : ε] | [〈s : Ps : ε〉 : s!c{{quit〈〉.end}} : ε]
↓τ

[〈c : Pc : ε〉 : c?s{{login〈〉 . . .}} : s!c(quit〈〉)] | [〈s : Pq
s : ε〉 : end : ε]

↓τ
errorc | [〈s : Pq

s : ε〉 : end : ε]
↓τ

errorc,s



Networks of monitored blackboxes (2/2)

〈c : Pc : s!c(quit〈〉)〉 〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

〈s : Ps : ε〉 〈s : Pq
s : ε〉 〈s : Pe

s : ε〉
s!c(quit〈〉) end

[〈c : Pc : ε〉 : c?s{{login〈〉 . . .}} : ε] | [〈s : Ps : ε〉 : s!c{{quit〈〉.end}} : ε]

↓τ
[〈c : Pc : ε〉 : c?s{{login〈〉 . . .}} : s!c(quit〈〉)] | [〈s : Pq

s : ε〉 : end : ε]
↓τ

errorc | [〈s : Pq
s : ε〉 : end : ε]

↓τ
errorc,s



Networks of monitored blackboxes (2/2)

〈c : Pc : s!c(quit〈〉)〉 〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

〈s : Ps : ε〉 〈s : Pq
s : ε〉 〈s : Pe

s : ε〉
s!c(quit〈〉) end

[〈c : Pc : ε〉 : c?s{{login〈〉 . . .}} : ε] | [〈s : Ps : ε〉 : s!c{{quit〈〉.end}} : ε]
↓τ

[〈c : Pc : ε〉 : c?s{{login〈〉 . . .}} : s!c(quit〈〉)] | [〈s : Pq
s : ε〉 : end : ε]

↓τ
errorc | [〈s : Pq

s : ε〉 : end : ε]
↓τ

errorc,s



Networks of monitored blackboxes (2/2)

〈c : Pc : s!c(quit〈〉)〉 〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

〈s : Ps : ε〉 〈s : Pq
s : ε〉 〈s : Pe

s : ε〉
s!c(quit〈〉) end

[〈c : Pc : ε〉 : c?s{{login〈〉 . . .}} : ε] | [〈s : Ps : ε〉 : s!c{{quit〈〉.end}} : ε]
↓τ

[〈c : Pc : ε〉 : c?s{{login〈〉 . . .}} : s!c(quit〈〉)] | [〈s : Pq
s : ε〉 : end : ε]

↓τ
errorc | [〈s : Pq

s : ε〉 : end : ε]

↓τ
errorc,s



Networks of monitored blackboxes (2/2)

〈c : Pc : s!c(quit〈〉)〉 〈c : Pq
c : ε〉 〈c : Pe

c : ε〉
c?s(quit〈〉) end

〈s : Ps : ε〉 〈s : Pq
s : ε〉 〈s : Pe

s : ε〉
s!c(quit〈〉) end

[〈c : Pc : ε〉 : c?s{{login〈〉 . . .}} : ε] | [〈s : Ps : ε〉 : s!c{{quit〈〉.end}} : ε]
↓τ

[〈c : Pc : ε〉 : c?s{{login〈〉 . . .}} : s!c(quit〈〉)] | [〈s : Pq
s : ε〉 : end : ε]

↓τ
errorc | [〈s : Pq

s : ε〉 : end : ε]
↓τ

errorc,s



Results

Theorem (Soundness)
If all the monitored blackboxes in a network N satisfy a protocol G, then N behaves as
specified by G.

Theorem (Transparency)
If a monitored blackbox satisfies a protocol, then it is behaviorally equivalent to its contained
blackbox (modulo coordination messages).

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 23 / 25



Conclusion

I Types for message-passing concurrency
I Session types: A class of behavioral types for communication correctness
I A new framework for runtime verification based on multiparty session types
I More details in our papers; see www.jperez.nl

Current and future work:
I Coalgebraic and coinductive approaches to session types
I Session types beyond linear logic / propositions as sessions
I Session-based concurrency implemented on Maude (rewriting logic)

Pérez (RUG) A Logical Basis for the Verification of Message-Passing Programs 24 / 25

www.jperez.nl


A Logical Basis for the Verification of Message-Passing Programs

Jorge A. Pérez

Fundamental Computing Group
University of Groningen, The Netherlands

https://www.rug.nl/fse/fc

Dutch Formal Methods Day
April 16, 2024

https://www.jperez.nl
https://www.rug.nl/fse/fc

	Session Types for Message-Passing Concurrency
	Example: Two-Buyer Protocol

	Runtime Verification Based on Session Types
	Dynamic Verification
	Conclusion


