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Keywords and Slogans

Concurrency Theory, Message-Passing, Programming Languages, Verification

• Type systems
Slogan: Well-typed programs can’t go wrong (Milner)

• Process calculi
Slogan: The π-calculus treats processes like the λ-calculus treats functions
• Session types for communication correctness

Slogan: What and when should be sent through a channel

• Relative expressiveness of (typed) programming calculi
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This Talk: Bridging Functions and Concurrency

• Bridges between functional and concurrent programming calculi
→ Encodings as formal compilers (language translations)

• Encodings informed by session types:
• Protocols guide encoding definitions
• Linearity is key to enforce optimizations
• Encoding correctness based on prior work on typed equivalences [CONCUR’15]

• Type-based extensions of known encodings
• New encodings not available in untyped settings
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When is a Program Correct?

Sequential Programs

“Programs produce outputs that
are consistent with their input”

Concurrent Programs

“Programs always
respect their intended protocols”
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Type Systems

Sequential Languages
• Data type systems classify values in a program

• Examples: Integers, strings of characters

Concurrent Languages
• Behavioral type systems classify protocols in a program

• Example: “first send username, then receive true/false, finally close”

• A typical bug: sending messages in the wrong order
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Protocols as Session Types
Session types uniformly describe protocols in terms of
• communication actions (input and output)
• labeled choices (offers and selections)
• sequential composition
• recursion

Session protocols are attached to interaction devices:
• π-calculus names
• service endpoints
• Go channels
• · · ·

Sequentiality in types goes hand-in-hand with sequentiality in processes
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Protocols as Session Types

S ::= !U ; S output value of type U , continue as S

| ?U ; S input value of type U , continue as S

| &{li : Si}i∈I offer a selection between S1, . . . ,Sn

| ⊕{li : Si}i∈I select between S1, . . . ,Sn

| µt .S | t recursion

| end terminated protocol

(Labels l1, . . . , ln are pairwise different.)

Notice:
• U stands for basic values (e.g. int) but also sessions S (aka delegation)
• Sequential communication patterns (no built-in concurrency)
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Session-Based Concurrency

Two phases:

I. Services advertise their session protocols along channel names.
Agreements are realized by their point-to-point interaction,
in an unrestricted and non-deterministic way.

II. After agreement, services establish a session using session names.
Intra-session interactions follow the intended protocol,
in a linear and deterministic way.

Notice:
• ‘Linear’ and ‘unrestricted’ in the sense of Girard’s linear logic.
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Challenge

• Many behavioral type systems!
• Correctness via various behavioral properties

- Protocol fidelity, comm. safety, deadlock-freedom

• Different type systems, properties and insights

• A program can be both correct and incorrect!
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Relative Expressiveness

Connect behavioral type systems
by relating the concurrent languages on which they operate

Goals
3 Encodability result:

A correct compiler between two concurrent languages

7 Separation result:
A proof that a correct compiler does not exist

Highlights:
⇒ A general, rigorous, flexible, and practical approach
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Higher-Order Concurrency

• Process languages in which values may contain processes

• Natural bridge between the λ-calculus and process calculi

• Key example: the higher-order π-calculus

A celebrated result, by Sangiorgi (1992)

• Process passing is representable using name passing

• Encoding is fully abstract wrt barbed congruence
(contextual equivalence)

• Highlights significance of the π-calculus

• Enables transfer reasoning techniques
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Higher-Order Session Concurrency
λx.P1

CLIENT HOTEL A HOTEL B

λx.P2

room

quoteA

quoteA

quoteB

acceptQ

rejectQ

credit

room

quoteB

acceptQ

rejectQ

credit

Two alternative sources:
• Higher-order π-calculi
+ session communication (establishment, input/output, labeled choice)
• Session π-calculi
+ passing of abstractions λx .P (functions from names to processes)
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Higher-order π-calculus with sessions (HOπ)
n ,m ::= a , b | s, s names: shared and linear
u ,w ::= n | x , y , z name identifiers

V ,W ::= u | λx .P | x , y , z values: names, abstractions

P ,Q ::= u?(x ).P | u!〈V 〉.P input / output

| u . {li : Pi}i∈I | u / l .P labeled choice

| X | µX .P recursion

| P | Q | (ν n)P | 0 parallel, restriction, inaction

| V u name application

Reduction Semantics: Key Rules
(λx .P) u −→ P{u/x}

n!
D
V
E
.P | n?(x ).Q −→ P | Q{V/x}

n / lj .Q | n . {li : Pi}i∈I −→ Q | Pj (j ∈ I )



Example: Two Different Clients in HOπ

Client1 , (ν h1, h2)(s1!
D
λx .Pxy{h1/y}

E
.s2!

D
λx .Pxy{h2/y}

E
.0 |

h1?(x ).h2?(y).if x ≤ y then

(h1 / accept.h2 / reject.0 else h1 / reject.h2 / accept.0))

Pxy , x !〈room〉.x?(quote).y!〈quote〉.y .
(

accept : x / accept.x !〈credit〉.0 ,
reject : x / reject.0

)
............................................................................................................................

Client2 , (ν h)(s1!
D
λx .Q1{h/y}

E
.s2!

D
λx .Q2{h/y}

E
.0)

Q1 , x !〈room〉.x?(quote1).y!〈quote1〉.y?(quote2).Rx

Q2 , x !〈room〉.x?(quote1).y?(quote2).y!〈quote1〉.Rx

Rx , if quote1 ≤ quote2 then (x / accept.x !〈credit〉.0 else x / reject.0)
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Session Types for HOπ

C ::= S | 〈S〉 | 〈L〉 first-order types

L ::= C→� | C(� functional types (shared / linear)

U ::= C | L value types

S ::= !〈U 〉; S output

| ?(U ); S input

| ⊕{li : Si}i∈I selection

| &{li : Si}i∈I branching

| µt.S | t | end recursive and terminated type

Judgements for values and processes:

Γ; Λ; ∆ ` V .U Γ; Λ; ∆ ` P . �
Jorge A. Pérez (Univ. of Groningen) Session Types and Higher-Order Concurrency 17 / 44



Example: Typing a Client

Client1 , (ν h1, h2)(s1!
D
λx .Pxy{h1/y}

E
.s2!

D
λx .Pxy{h2/y}

E
.0 |

h1?(x ).h2?(y).if x ≤ y then

(h1 / accept.h2 / reject.0 else h1 / reject.h2 / accept.0))

Pxy , x !〈room〉.x?(quote).y!〈quote〉.y .
(

accept : x / accept.x !〈credit〉.0 ,
reject : x / reject.0

)

A session type (with base types quote, room, and credit):

U = !〈room〉; ?(quote);⊕{accept :!〈credit〉; end, reject : end}

Typing judgments:

∅; ∅; y :!〈quote〉; &{accept : end, reject : end} ` λx .Pxy .U(�
∅; ∅; s1 :!〈U(�〉; end · s2 :!〈U(�〉; end ` Client1 . �



Key Questions

At the level of processes, two mechanisms: name passing and abstraction passing
(first- and higher-order concurrency).
I Are both mechanisms fundamental?
I Can one of them be represented using the other?

At the level of types:
I To what extent the structure of session types play a role?
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Sub-languages of HOπ

HOπ

π HO

HO + MST

• HO isolates higher-order features:
only abstraction passing, no name passing

• π isolates first-order features:
only name passing, no abstraction passing

• HO + MST is as HO but without
sequentiality in session types
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Sub-calculi of HOπ

n ,m ::= a , b | s, s names: shared and linear
u ,w ::= n | x , y , z name identifiers

V ,W ::= u | x , y , z | λx .P values: names, abstractions

P ,Q ::= u?(x ).P | u!〈V 〉.P input / output

| u . {li : Pi}i∈I | u / l .P labeled choice

| X | µX .P recursion

| P | Q | (ν n)P | 0 parallel, restriction, inaction

| V u name application

• HO lacks shaded constructs

• π lacks boxed constructs
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Session Types for HO and π

C ::= S | 〈S〉 | 〈L〉 first-order types

L ::= C→� | C(� shared / linear functional types

U ::= C | L value types

S ::= !〈U 〉; S output

| ?(U ); S input

| ⊕{li : Si}i∈I selection

| &{li : Si}i∈I branching

| µt.S | t | end recursive and terminated type

• Types for HO lack shaded constructs

• Types for π lack boxed constructs
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Minimal Session Types for HO

C ::= S | 〈U 〉 value types

U ::= fC→� | fC(� functional types

S ::= !〈fU 〉; end output

| ?(fU ); end input

| ⊕{li : Si}i∈I selection

| &{li : Si}i∈I branching

| µt.S | t | end recursive and terminated type

- Sequentiality in types

+ Polyadic communication
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Expressivity Results for HOπ

HOπ

π HO

HO + MST

HOπ and its sub-calculi are equally expressive
• Encoding HOπ into π
Refines Sangiorgi’s with session types

• Encoding HOπ into HO
New encoding, even in untyped settings

Minimal Session Types for HO
• Session types explained in terms of themselves
• Closer to types in actual PLs

HOπ encodes its extensions
• Higher-order abstractions
• Polyadic communication
• Their super-calculus
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This Talk

HOπ

π HO

HO + MST

· Encoding HOπ into π and HO

· Minimal session types for HO

Further Results
· The notion of precise encodings
· New typed equivalence for HOπ

· Encoding extensions of HOπ into HOπ

· Negative result, using minimal encodings:
session names can’t encode shared communication

· Comparing HO and π, using tight encodings



Two Precise Encodings

HOπ

π HO

Recall:

- π lacks higher-order features (abstraction passing, application)

- HO lacks first-order features (name passing and recursion)

Approach
• Abstract definition of precise encoding (translation + correctness criteria)

• Instantiate the definition with typed calculi, typed semantics, equivalences
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Encoding #1: HOπ into π
Sangiorgi’s encoding refined using linearity.

Translating processes:

Ju!
D
λx .Q

E
.PK ,

8><>:
(ν a)(u!〈a〉.(JPK | a?(y).y?(x ).JQK) ) if Q is linear

(ν a)(u!〈a〉.(JPK | ∗ a?(y).y?(x ).JQK) ) otherwise

Ju?(x ).PK , u?(x ).JPK
Jx uK , (ν s)(x !〈s〉.s!〈u〉.0)

J(λx .P) uK , (ν s)(s?(x ).JPK | s!〈u〉.0)

Translating types:

(〈!〈S(�〉; T 〉) , !
D
〈?((〈S〉)); end〉

E
; (〈T 〉)

(〈?(S(�); T 〉) , ?
�
〈?((〈S〉)); end〉

�
; (〈T 〉)
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Example: Encoding #1 at Work
Client1 , (ν h1, h2)(s1!

D
λx .Pxy{h1/y}

E
.s2!

D
λx .Pxy{h2/y}

E
.0 |

h1?(x ).h2?(y).if x ≤ y then

(h1 / accept.h2 / reject.0 else h1 / reject.h2 / accept.0))

Pxy , x !〈room〉.x?(quote).y!〈quote〉.y .
(

accept : x / accept.x !〈credit〉.0 ,
reject : x / reject.0

)

..........................................................................................................................

JClient1K = (ν h1, h2)
�

(ν a1)(s1!〈a1〉.(ν a2)(s2!〈a2〉.
(0 | a2?(y).y?(x ).JPxy{h2/y}K)) | a1?(y).y?(x ).JPxy{h1/y}K) |

h1?(x ).h2?(y).if x ≤ y then

(h1 / accept.h2 / reject.0 else h1 / reject.h2 / accept.0)
�

where JPxyK = Pxy , for it does not involve higher-order communication.
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Encoding #2: HOπ into HO

Two Challenges
1. Encoding name passing into abstraction passing

No completely satisfactory encoding known in the literature

2. Encoding recursion µX .P using session names
How to model infinite behavior using only linear names?
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Encoding HOπ into HO: Challenge 1 of 2

How to encode the output of a name b along channel a?

Idea: “Pack” b into an abstraction
The receiver “unpacks” b following a protocol on a fresh session:

Ja!
D
b
E
.PK = a!

D
λz . z?(x ).(x b)

E
.JPK

Ja?(x ).QK = a?(y).(ν s)(y s | s!
D
λx . JQK

E
.0)

Type preservation: Input/outputs are preserved!
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Example: Encoding Name-Passing in HO

With name-passing, we can have the following reduction:

n!〈m〉.P | n?(x ).Q −→ P | Q{m/x}

No name-passing in HO! Using the encoding, we have:

Jn!〈m〉.P | n?(x ).QK = n!
D
λz . z?(x ).(x m)

E
.JPK | n?(y).(ν s)(y s | s!〈λx . JQK〉)

−→ JPK | (ν s)(λz . z?(x ).(x m) s | s!〈λx . JQK〉)
−→ JPK | (ν s)(s?(x ).(x m) | s!〈λx . JQK〉)
−→ JPK | (λx . JQK) m
−→ JPK | JQK{m/x}
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Encoding HOπ into HO: Challenge 2 of 2

Key Idea for Translating µX .P
• Treat P as an abstraction with variables instead of names

• Having no linear names, this abstraction can be duplicated;
its (recursive) type captures infinite behavior

Formally
• Map

jj
·
kk
·
converts free session names into name variables.

• Below, ñ = fn(P):

JµX .PKf , (ν s)(s!
D
λ(||ñ ||, y). y?(zX ).

jj
JPKf ,{X→ñ}

kk
∅

E
.0 | s?(zX ).JPKf ,{X→ñ})

JX Kf , (ν s)(zX (ñ , s) | s!〈zX 〉.0) (ñ = f (X ))

• Moreover: (〈Γ ·X : ∆〉) = (〈Γ〉) · zX : (eS , µt.?((eS , t)→�); end)→�.
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Session Types: The Reality

• Sequential composition not supported in types for actual PLs.
• Channel types declare payload types and channel directions, not structure.

- In Go:
ch := make(chan int)

- In CloudHaskell:
(s,r) <- newChan::Process (SendPort Int, ReceivePort Int)

• Programmers must enforce sequentiality themselves  Error-prone
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On Sequentiality in Processes: Trios in Concert

A beautiful result, by Parrow (1996)
• π-calculus processes decomposed as a collection of
trios processes with at most 3 nested prefixes

• P and its decomposition D(P) are tightly related, up to
weak bisimilarity:

P ≈ D(P)

• Untyped setting: No constraints on name usage

• Replication instead of recursion

• No higher-order communication nor choices
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Bridge the gap!

Can we dispense with sequential composition in session types?

• Yes! Sequentiality in types can be codified by sequentiality in processes.
Key inspiration from Parrow’s decomposition approach.

• Only sequential composition in processes is truly indispensable.

Key Ideas

A process P typed with standard session types S1, . . . ,Sn :

• Sequencing in S1, . . . ,Sn is codified by D(P), the decomposition of P .

• Each Si is decomposed into G(Si), a list of minimal session types.

• Roughly: If Γ ` P then G(Γ) ` D(P).
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Example: Decomposing Processes
CPay | QPay D(CPay | QPay) = c1!〈〉 | c1?().c2!〈〉.c6!〈〉

CPay

u!〈36〉.
u!〈bank〉.
u?(status).

0

D(CPay)

c6?().u1!〈36〉.c7!〈〉 |
c7?().u2!〈bank〉.c8!〈〉 |
c8?().u3?(status).c9!〈status〉 |
c9?(status).0

QPay

u?(a).

u?(b).

u!〈a < 42〉.
0

D(QPay)

c2?().u1?(a). c3!〈a〉 |
c3?(a).u2?(b). c4!〈a , b〉 |
c4?(a , b).u3!〈a < 42〉. c5!〈b〉 |
c5?(b).0



Example: Decomposing Session Types

u : ?Int; ?Str; !Bool; end

QPay = u?(a).u?(b).u!〈a < 42〉.0

D(QPay)

c2?().u1?(a).c3!〈a〉 ‖ c3?(a).u2?(b).c4!〈a , b〉‖ c4?(a , b).u3!〈a < 42〉.c5!〈b〉

u1 : ?Int; end
c2 : ?(); end

u2 : ?Str; end
c3 : ?(Int); end

u3 : !Bool; end
c4 : ?(Int,Bool); end
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Concluding Remarks

• Expressivity results for HO process calculi with
session types

• Different calculi with functional and concurrent
features, tightly connected

• Session types guide encodings, and induce strong
forms of correctness

• Session types explained in terms of themselves

• More results in Inf & Comp’19 / ECOOP’19.

HOπ

π HO

HO + MST
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