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It is fair to say that expressiveness has been key to the success and impact of session types: enhancing
the expressivity of typed processes and/or the properties enforced by typing is often a strong motiva-
tion for developing new typed frameworks. Rigorously contrasting different variants of session types
from an expressiveness perspective is a pressing and non-trivial challenge. This short note gives a
unified overview of some of our works in this direction; they cover various angles, including: higher-
order communication, binary and multiparty protocols, and “propositions-as-sessions”. The talk at
ST30 will reflect on these (recent) results but also on avenues for future exploration.

In a 2016 position paper [18], I argued about the challenge of typed expressiveness in concurrency. The
challenge consists in lifting the techniques that have proved so successful for assessing the expressiveness
of untyped π-calculi to the setting of (session) typed π-calculi. The motivations are similar as in the
untyped case: we would like to understand the relative strengths of different type systems, and to compare
them rigorously to understand their differences and relative merits. This is actually a dynamic problem,
as the number of behavioral type systems appearing in the literature is ever increasing. By disciplining
the use of channels/names in processes, (session) types strongly influence their expressiveness. Casting
expressiveness studies in the typed setting puts the focus on the correctness properties ensured by typing:
different type systems enforce different properties, and so they determine a new, crucial dimension for
comparisons. This is relevant in order to have satisfactory ‘apples-to-apples’ comparisons.

We have pursued the challenge of typed expressiveness particularly within the project “Unifying
Correctness for Communicating Software” (2019-2024), whose goal is to connect different type systems
via new expressiveness results. The talk at ST30 will give a unified overview of some selected results:

Higher-Order Concurrency Session π-calculi with higher-order communication, in which exchanged
values include processes, are interesting because they can specify code mobility. In [13, 15], we study a
family of languages with higher-order communication. We identify a core higher-order session calculus,
which supports only passing of abstractions (functions from names to processes) but lacks recursion.
Still, it can correctly codify name passing, recursion, and higher-order abstractions (functions from pro-
cesses to processes). We obtain a taxonomy of session-typed languages, defined by a series of typed
encodability results: each result consists of a translation on processes (as usual) but also of a translation
on types, which ensures that source protocols are properly translated. In all cases, types are essential in
defining the translations and/or in proving their correctness. Defining this taxonomy requires (i) enhanc-
ing encodability criteria with session types and (ii) developing (typed) behavioral equivalences [14].

Minimal Session Types The study in [13, 15] considers a standard formulation of session types.
In [3, 2], we explore a simpler formulation, which dispenses with sequencing at the level of types. This
way, e.g., in a type such as ‘!〈S〉;T ’ the continuation type T can only be ‘end’. This formulation, dubbed
minimal session types, resembles simple and linear types for the π-calculus but also the way in which
(one-shot) channels are typically used in languages such as Go. Using the core higher-order session cal-
culus from [13, 15], we prove that sequencing constructs in processes and session types is convenient but
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redundant: every process typable with standard session types can be compiled down to a process typable
with minimal session types. This shows that only sequentiality in processes is truly indispensable, as it
can correctly codify sequentiality in types. This can be considered as a result of absolute expressiveness,
which explains session types in terms of themselves, without appealing to extraneous type disciplines.
The idea behind minimal session types is rather simple and yet robust, as the formulation and associated
correctness results can be adapted also to sessions the first-order setting, as shown in [1].

Binary and Multiparty Session Types Arguably, the two most active research strands within session
types concern multiparty session types and “propositions-as-sessions”—the propositions-as-types ap-
proach to session types. The work in [4] jointly addresses them by developing an analysis of multiparty
protocols using the binary session type system derived from the Curry-Howard interpretation of linear
logic as session types. The idea is to analyze a multiparty implementation (a collection of processes, one
per protocol participant) together with a so-called medium process, which is synthesized from a given
global type. Although our analysis is not an encodability result as usual, it does bear witness to the
expressivity of the session types based on linear logic, and enables to transfer the deadlock-freedom for
processes involving delegation and interleaving to the multiparty setting. The analysis has been general-
ized in [10], which develops a technique based on router processes, which “wrap” local implementations
while enabling the composition of protocol participants in arbitrary topologies. Routers can be used in
static verification (as shown in [10]) but also in run-time verification, as recently shown in [11].

Type Systems for Deadlock-Freedom The work [7, 8] compares two type systems that enforce the
deadlock-freedom property: (i) a type system based on priorities, as pioneered by Kobayashi [12]; and (ii)
a type system based on propositions-as-sessions. To enable a coherent, ‘apples-to-apples’ comparison,
two classes of processes are defined, denoted K and L , which contain the deadlock-free induced by the
type systems of [12] and [19], respectively. One key result in [7, 8] is that L (K , i.e., the priority-based
approach to deadlock-freedom subsumes the proof-theoretical approach. A key insight is that while the
class L contains exclusively processes with tree-like topologies, the class K contains also processes
with safe forms of circular topologies. This work also gives translations of K into L .

Typed Functions into Session-Typed Processes Encodings of the λ -calculus provide a significant
stress test of the expressiveness of the π-calculus. Following this line, we have developed encodings
of resource λ -calculi into session-typed π-calculi derived from propositions-as-sessions [16, 17]. A
distinctive aspect here is non-determinism: in λ , non-determinism concerns fetching of resources from
bags of available resources; in π , we have sessions that are non-deterministically available—they may
be available but may also fail. Because our resource λ -calculi are equipped with intersection types, our
encodability results delineate a new, surprising connection between intersection types and linear logic.

Beyond Linear Logic The discovery of ‘propositions-as-sessions’ has a substantial and direct impact
on our research program on typed expressiveness, for two reasons. First, as the correspondence naturally
entails several key correctness properties (fidelity, deadlock-freedom, confluence, strong normalization),
it defines a canonical class of session processes, upon which all other classes should be compared.
Second, logic suggests a principled avenue for extensions: new typed frameworks can be obtained by
suitably extending the underlying (linear) logic. Representative examples of this kind of extensions
include behavioral polymorphism [5] and domain-aware computation [6]; just right outside linear logic,
recent work has established a new concurrent interpretation of the logic of bunched implications [9].
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